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Save-the-date (for another workshop)

Extreme events in agriculture and forestry: challenges, methods and applications

9-11 June 2026
Avignon University
Organized by:

Focus project CLIMATHS (PEPR Maths VivES)
Project LOST OXIGEN (INRAE-CLIMAE)

Focus topics (in alphabetical order):

Climate indicators
Compound events and risks
Extreme value theory
Heatwaves and droughts
Interactions between biotic and abiotic risks
Physical processes and climate dynamics of extreme events
Phenology and ecophysiology of plants
Rare-event algorithms
Stochastic weather generators for impact models
Programme and website are under under construction.

Soon available at
https://extremes2026.sciencesconf.org/


https://extremes2026.sciencesconf.org/
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Ecoclimatic impacts on crops
® Weather impacts on crop development and yield depend on timing in life cycle
® Modeling based on “crop time”, not calendar time, to consider crop vulnerability

® Ecoclimatic indicator: A meaningful weather summary for a crop risk during a
specific phase of the life cycle

Goal: Development of a low-cost stochastic multivariate spatial ecoclimatic generator

Different representations of wheat phenology events
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Source: [Hyles et al., 2020]



BBCH scale for wheat phenology

® Typically sowing in autumn of year Y — 1, harvest in summer of year Y
® BBCH scale with 10 development stages from Germination (0) to Senescence (9)

® |n this work: Focus on drought risk during spring growing stages 2-5
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Source: Wikipedia; Group of Crop Science, ETH Ziirich
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Data of ecoclimatic indicators

One value per combination of

Location + Year 4+ Phase + Indicator + Wheat ideotype

Gridded (8km) training data from DRIAS platform:
® Scenario RCP8.5, 2007-2100, GCM-RCM model of CNRM, bias-corrected
® Provides plausible simulations of variability in present and future ecoclimate

Data based on PhD work of Maél Aubry using 31 indicators for 14 risk categories
[Aubry et al., 2025]

Fixed wheat ideotype common in France

Phenological phases determined using the STICS crop model

Drought indicators based on Precipitation and Potential Evapotranspiration

Indicator
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Three drought indicator series for Paris and Toulouse pixels
(BBCH phases S2-S3, S3-S4, S5-S5)

Drought indicators by phase
s253 T sas4 s485 |

Location

— Paris
~— Toulouse




6/13

Ecoclimate has spatial structure

Drought indicator (Phase S2-S3)
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— Stochastic structures with spatial trends and correlation
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Some desirata (and solutions) for a stochastic ecoclimate generator

® Spatial correlation for capturing spatial compound events
< Spatial Gaussian copula

® Space-varying correlation range for large-scale modeling (France)
— SPDE approach for Gaussian fields with Matérn-like covariance
— Pre-estimated local range coefficient as covariate

® Multivariate modeling (compound events) with many indicators
<+ Spatial Blind Source Separation
— Estimate weight matrix W and independent zero-mean Gaussian fields €; with

Indicatory (s, t) ei(s, t)

=W : jointly for all pixels s and years t
Indicatorm(s, t) em(s, t)

® Large numbers of spatial locations (~ 8000)
< Gauss—Markov Random Fields (GRMFs)
— INLA-based estimation

® Extrapolation for generating larger extremes than in training data
< Extreme-Value Theory (Peaks-over-Threshold)
— Conditional GMRF simulation



Towards a modular, fast and robust estimation procedure

® Estimate pixel-wise marginal model for each indicator
— Hybrid distribution with continuous density: kde bulk, Generalized Pareto tail
[Opitz et al., 2021]

® Transform each indicator to standard Gaussian using distributions from Step 1

® Run Spatial Blind Source Separation (stbss package) on multivariate
space-time indicator data

0 Calculate local range covariate for each univariate space-time source from Step 3

0 Fit second-order nonstationary INLA-SPDE models separately to each source
field using the covariate calculated in Step 4 (R-INLA package)

® Simulate new source field data (GMRF simulation in R-INLA package) and
backtransform to original fields and marginal distributions
— GMREF simulation allows conditioning on extreme weighted spatial averages
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Example: Constructed covariate for the correlation range

® Covariate = Estimated median exceedance range at each pixel
[Cotsakis et al., 2024]

® Exceedance range = Distance to nearest non exceedance of a high marginal
quantile (given that it is exceeded at the pixel)

® Nonstationary SPDE Matérn range estimated as p(s) = po x Covariate #1

Covariate for Drought indicator (Phase S2-S3) with p; = 0.7

1000 -

750-
Extremal
range
125
100
75
50
25

500~

250~

|
0 250 500 750 1000
9/13



10/13

Example: New simulations

® Proof-of-concept for a univariate model: Drought indicator (Phase S2-S3)
® Simulation conditional on spatial average of two Gaussian standard deviations

2700~
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Three new simulations of the Drought indicator (Phase S2-S3)
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New conditional simulations are much more extreme

Simulated values (Uniform(0,1)-scale)

Simulation vs. Training
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Conclusion and outlook

® Proof-of-concept for a spatial multivariate ecoclimatic generator:
® Construct a modular and interpretable model with separately estimable components
® Enable scalability to many components and many locations

® Extrapolate towards new extremes

® Next steps:

® Estimate the full multivariate spatial model
® Validate the simulation model
® Transform indicators into yield distribution with a statistical yield prediction model

® Assess extremes of aggregated yield losses at large spatial scales
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