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Save-the-date (for another workshop)

Extreme events in agriculture and forestry: challenges, methods and applications

9-11 June 2026

Avignon University

Organized by:

Focus project CLIMATHS (PEPR Maths VivES)
Project LOST OXIGEN (INRAE-CLIMAE)

Focus topics (in alphabetical order):

• Climate indicators

• Compound events and risks

• Extreme value theory

• Heatwaves and droughts

• Interactions between biotic and abiotic risks

• Physical processes and climate dynamics of extreme events

• Phenology and ecophysiology of plants

• Rare-event algorithms

• Stochastic weather generators for impact models

Programme and website are under under construction.
Soon available at

https://extremes2026.sciencesconf.org/
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Ecoclimatic impacts on crops
• Weather impacts on crop development and yield depend on timing in life cycle
• Modeling based on “crop time”, not calendar time, to consider crop vulnerability
• Ecoclimatic indicator: A meaningful weather summary for a crop risk during a

specific phase of the life cycle

Goal: Development of a low-cost stochastic multivariate spatial ecoclimatic generator

Different representations of wheat phenology events

Source: [Hyles et al., 2020]
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BBCH scale for wheat phenology

• Typically sowing in autumn of year Y − 1, harvest in summer of year Y

• BBCH scale with 10 development stages from Germination (0) to Senescence (9)

• In this work: Focus on drought risk during spring growing stages 2–5

Source: Wikipedia; Group of Crop Science, ETH Zürich
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Data of ecoclimatic indicators
One value per combination of

Location + Year + Phase + Indicator + Wheat ideotype

• Gridded (8km) training data from DRIAS platform:
• Scenario RCP8.5, 2007–2100, GCM-RCM model of CNRM, bias-corrected
• Provides plausible simulations of variability in present and future ecoclimate

• Data based on PhD work of Maël Aubry using 31 indicators for 14 risk categories
[Aubry et al., 2025]

• Fixed wheat ideotype common in France
• Phenological phases determined using the STICS crop model
• Drought indicators based on Precipitation and Potential Evapotranspiration

Three drought indicator series for Paris and Toulouse pixels
(BBCH phases S2-S3, S3-S4, S5-S5)
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Ecoclimate has spatial structure

Drought indicator (Phase S2-S3)
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↪→ Stochastic structures with spatial trends and correlation
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Some desirata (and solutions) for a stochastic ecoclimate generator

• Spatial correlation for capturing spatial compound events
↪→ Spatial Gaussian copula

• Space-varying correlation range for large-scale modeling (France)
↪→ SPDE approach for Gaussian fields with Matérn-like covariance
↪→ Pre-estimated local range coefficient as covariate

• Multivariate modeling (compound events) with many indicators
↪→ Spatial Blind Source Separation
↪→ Estimate weight matrix W and independent zero-mean Gaussian fields εj with Indicator1(s, t)

...
Indicatorm(s, t)

 = W

ε1(s, t)
...

εm(s, t)

 jointly for all pixels s and years t

• Large numbers of spatial locations (∼ 8000)
↪→ Gauss–Markov Random Fields (GRMFs)
↪→ INLA-based estimation

• Extrapolation for generating larger extremes than in training data
↪→ Extreme-Value Theory (Peaks-over-Threshold)
↪→ Conditional GMRF simulation
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Towards a modular, fast and robust estimation procedure

1 Estimate pixel-wise marginal model for each indicator
↪→ Hybrid distribution with continuous density: kde bulk, Generalized Pareto tail
[Opitz et al., 2021]

2 Transform each indicator to standard Gaussian using distributions from Step 1

3 Run Spatial Blind Source Separation (stbss package) on multivariate
space-time indicator data

4 Calculate local range covariate for each univariate space-time source from Step 3

5 Fit second-order nonstationary INLA-SPDE models separately to each source
field using the covariate calculated in Step 4 (R-INLA package)

6 Simulate new source field data (GMRF simulation in R-INLA package) and
backtransform to original fields and marginal distributions
↪→ GMRF simulation allows conditioning on extreme weighted spatial averages
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Example: Constructed covariate for the correlation range
• Covariate = Estimated median exceedance range at each pixel

[Cotsakis et al., 2024]
• Exceedance range = Distance to nearest non exceedance of a high marginal

quantile (given that it is exceeded at the pixel)
• Nonstationary SPDE Matérn range estimated as ρ(s) = ρ0 × Covariate ρ1

Covariate for Drought indicator (Phase S2-S3) with ρ̂1 = 0.7
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Example: New simulations
• Proof-of-concept for a univariate model: Drought indicator (Phase S2-S3)
• Simulation conditional on spatial average of two Gaussian standard deviations

Three new simulations of the Drought indicator (Phase S2-S3)
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New conditional simulations are much more extreme

Simulated values (Uniform(0,1)-scale) Simulation vs. Training
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Conclusion and outlook

• Proof-of-concept for a spatial multivariate ecoclimatic generator:

• Construct a modular and interpretable model with separately estimable components

• Enable scalability to many components and many locations

• Extrapolate towards new extremes

• Next steps:

• Estimate the full multivariate spatial model

• Validate the simulation model

• Transform indicators into yield distribution with a statistical yield prediction model

• Assess extremes of aggregated yield losses at large spatial scales
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