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Modeling distributions

(3.5, 7.6, 0.3, 5.6, 7.6)

Score-based Generative Models (SGMs) currently represent the
state of the art in image, tabular and video generation thanks to
their ability to accurately capture data modes and model complex
dependencies.
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= We can introduce the map ® : yp — yT
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Needed approximation

= We don’t know pg(x)
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Needed approximation

= We don’t know pp(x) == Don't know p¢(x)

= We don’t know and X7 4 PT

= po(x) represented by {X{};

v sp(t,x) =~ trained on {X}};
Eerq(e),imti(n),z~N 0,0 | S0(t, X§ + 0:Z)— [§

. . d
= We approximate pr(x) ~ Xo + 072 with Moo ~ 072
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Needed approximation

= We don't know py(x) == Don't know pt(x)
d

= We don't know and X1 ~ pr

= pp(x) represented by {Xé},-

= sp(t,x) ~ trained on {Xé},-

= We approximate p7(x) with mog

= (We approximate ® solving the equation with numerical methods)

Ve = 01-t07—1S9(t, ¥t)
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Needed approximation

= We don't know py(x) == Don't know pt(x)

= We don't know and X1 i PT
= pp(x) represented by {Xé},-

= sp(t,x) ~ trained on {Xé},-
= We approximate p7(x) with mog

= (We approximate ® solving the equation with numerical methods)

Ve = 01-t07—1S9(t, ¥t)

= |nitialize \A/o < orZ
= Generate Y7 = ®(Yp)
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Modeling distributions

» (Data suggest that) Data distribution is heavytail

» P(X' > t)~ t® for some pixel /component (a > 0)

, \
® t-distribution / N
;

@ normal distribution

VZa
Cpst @ LF psim

GEOLEARNING MINES PARIS



Example : The Frechet Distribution - Log-quantiles

s fr(x)=ax " lforx eRY, a=3

= 10° training datapoints

Component X; - Step 2
5.586
5.267/ —— Train Data
4.948/ —— PReal Data
4.628
4.309
3.990
3.671
3.352
3.033
2.714
2.394
2.075
1.756
1.437
1.118
0.799
0.479
0.160
-0.159
-0.478

> PG PP P> 0P D© O O FL I PP S 5
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Example : The Frechet Distribution - Log-quantiles

s fr(x)=ax " lforx eRY, a=3

= 10° training datapoints

Component X; - Step 3
5.586
5.267/ —— Train Data
4.948 —— Real Data
4628 Dg — M, init
4.309
3.990
3.671
3.352
3.033
2.714
2.394
2.075
1.756
1.437
1.118
0.799
0.479
0.160
-0.159
ST o o o b 56 HA D SR P PP D P PP
N N SN N N AN RPN LS IS qqqq‘bqq‘bgq‘agq"’q&
S @q&q&q
=, Y
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Something went wrong: Tail events are under-generated
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Something went wrong: Tail events are under-generated

= The trained score sy(t, x) is not a good estimator
= The initialization Yy ~ o7 Z is very different from X ~ pr

= The numerical scheme to approximate ®(yp) is problematic
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Initialization problems

Xo + o1Z ~ pr1 is a-heavytail distribution - 7, is light-tailed
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Initialization problems

Xo + o1Z ~ pr1 is a-heavytail distribution - 7, is light-tailed
Component X; - Step 4

5.267/ —— Train Data

4.948) —— Real Data

—— Dg — N, init
*— Dg - prinit

N DL DD DD 9D DO OGN DD OO H D DD DD DD
VYV Q’bog?ogﬁn Q?’e @0 Q‘,bg°9°9°9faqq<a§qng&q:qq
S 9‘3& o
RN

@ Zj PSL#

GEOLEARNING MINES PARIS




Initialization problems

Xo + o1Z ~ pr1 is a-heavytail distribution - 7, is light-tailed

Component X; - Step 4
5.586
5.267/ —— Train Data
4.948) —— Real Data
—— Dg — N, init
Dg - pr init

N O O DN DD DO O NDD DO HD D DD DD D

0-0_\00’}00’>og?0-0?7n0900@00‘?:0090965»&@&% gngngq
S 9‘3& o

00.09

pT is a simple unimodal distribution - fit a heavytail model 7y on

noised data
' @ 2 e
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Score estimation problem

Sg(t, X) #
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Score estimation problem

Sg(t, X) + What if we use the true score ?
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Score estimation problem

Sg(t, X) + What if we use the true score ?

Component X, - Step 5
5.586
5.267 -— Train Data L
4.948) —— Real Data /
4628/ . po—p, init
oo Dy -prinit
3671 = Vlogp; - prinit
3352
3.033
2713
2394
2.075
1756
1.437
1118

- tail.

The real solved equation
allows
to perfectly generate the

0479
0.160
-0.159
0478 O O D> 92 DC PN OL PP PP PP PP DD
SO S SR A
o
[SICFICI
I
i’
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Score estimation problem

The problem is that the score learns to generalize generation
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The problem is that the score learns to generalize generation
But it learns to generalize on the data support

This is not an error but a reasonable behaviour of the neural net.
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Score estimation problem

The problem is that the score learns to generalize generation
But it learns to generalize on the data support
This is not an error but a reasonable behaviour of the neural net.

The denoiser doesn’'t know whether the data law is heavy-tail or
compactly supported
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Score estimation problem

The problem is that the score learns to generalize generation
But it learns to generalize on the data support
This is not an error but a reasonable behaviour of the neural net
The neural net doesn't know whether the data law is heavy-tail or compactly supported

Therefore, to make the denoiser generate a heavy-tailed
distribution, we need to explicitly force it to model a
heavy-tailed law.
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Encoding & Latent Space

= We train a score approximator on heavy-tail data {X{};

= Maybe we could preprocess {X}}; (heavytail) to {E[};
(light-tailed)

= Learn Ey and reverse the preprocessing to get Xo
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Encoding & Latent Space

= We train a score approximator on heavy-tail data {Xé}i
= Maybe we could preprocess {Xé},- (heavytail) to {E(;},- (light-tailed)

= Learn E}) and reverse the preprocessing to get )80

{X(l)}z = [ DECODER —>{E(l)}l
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Encoding & Latent Space

= We train a score approximator on heavy-tail data {Xé},'
= Maybe we could preprocess {Xé},v (heavytail) to {Eg},- (light-tailed)

= Learn Eb and reverse the preprocessing to get )eo
i i
{Xp}; = [oecooer| = {Ep};
A

E, = ENCODER| = }20

This is a viable approach only if the neural net is able to
correctly reproduce tails of a light-tailed distribution Eg

s @D 2F eam
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Conclusions & things i didn’t talk about

= SGM are the most powerful modeling tool

= We have serious problems in modeling tails

= The problem is posed by the score function

Optimal Transport map, properties of Unets architecture
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