
Extreme Rain Generation Modeling using
Score-Based Generative Models

Tiziano Fassina - PhD Student - Mines Paris
Tuesday 2nd December, 2025



Extreme Rain Generation Modeling using
Score-Based Generative Models

Tiziano Fassina - PhD Student - Mines Paris
Tuesday 2nd December, 2025



Score-based Generative Models for
Heavy-tail distributions:
Challenges and Perspectives

Tiziano Fassina - PhD Student - Mines Paris
Tuesday 2nd December, 2025



Modeling distributions

(3.5, 7.6, 0.3, 5.6, 7.6)

Score-based Generative Models (SGMs) currently represent the
state of the art in image, tabular and video generation thanks to
their ability to accurately capture data modes and model complex
dependencies.



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt(x) on [0,T] (pt(x) the law of
Xt = X0 + σtZ )

• .yt = .
σT−tσT−t∇ log pT−t(yt)

• We can introduce the map Φ : y0 7→ yT

• Y0
d∼ XT =⇒ Φ(Y0) = YT

d∼ X0



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt(x) on [0,T] (pt(x) the law of
Xt = X0 + σtZ )

• .yt = .
σT−tσT−t∇ log pT−t(yt)

• We can introduce the map Φ : y0 7→ yT

• Y0
d∼ XT =⇒ Φ(Y0) = YT

d∼ X0



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt(x) on [0,T]

(pt(x) the law of
Xt = X0 + σtZ )

• .yt = .
σT−tσT−t∇ log pT−t(yt)

• We can introduce the map Φ : y0 7→ yT

• Y0
d∼ XT =⇒ Φ(Y0) = YT

d∼ X0



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt(x) on [0,T] (pt(x) the law of
Xt = X0 + σtZ )

• .yt = .
σT−tσT−t∇ log pT−t(yt)

• We can introduce the map Φ : y0 7→ yT

• Y0
d∼ XT =⇒ Φ(Y0) = YT

d∼ X0



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt(x) on [0,T] (pt(x) the law of
Xt = X0 + σtZ )

• .yt = .
σT−tσT−t∇ log pT−t(yt)

• We can introduce the map Φ : y0 7→ yT

• Y0
d∼ XT =⇒ Φ(Y0) = YT

d∼ X0



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt(x) on [0,T] (pt(x) the law of
Xt = X0 + σtZ )

• .yt = .
σT−tσT−t∇ log pT−t(yt)

• We can introduce the map Φ : y0 7→ yT

• Y0
d∼ XT =⇒ Φ(Y0) = YT

d∼ X0



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt(x) on [0,T] (pt(x) the law of
Xt = X0 + σtZ )

• .yt = .
σT−tσT−t∇ log pT−t(yt)

• We can introduce the map Φ : y0 7→ yT

• Y0
d∼ XT =⇒ Φ(Y0) = YT

d∼ X0



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt(x) on [0,T] (pt(x) the law of
Xt = X0 + σtZ )

• .yt = .
σT−tσT−t∇ log pT−t(yt)

• We can introduce the map Φ : y0 7→ yT

• Y0
d∼ XT =⇒ Φ(Y0) = YT

d∼ X0



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt (x) on [0, T ] (pt (x) the law of Xt = X0 + σt Z)

•
.

yt =
.
σT−t σT−t ∇ log pT−t (yt )

• We can introduce the map Φ : y0 7→ yT

• Y0
d
∼ XT =⇒ Φ(Y0) = YT

d
∼ X0



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt (x) on [0, T ] (pt (x) the law of Xt = X0 + σt Z)

•
.

yt =
.
σT−t σT−t ∇ log pT−t (yt )

• We can introduce the map Φ : y0 7→ yT

• Y0
d
∼ XT =⇒ Φ(Y0) = YT

d
∼ X0

∞

ㆁ
℃

λ



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt (x) on [0, T ] (pt (x) the law of Xt = X0 + σt Z)

•
.

yt =
.
σT−t σT−t ∇ log pT−t (yt )

• We can introduce the map Φ : y0 7→ yT

• Y0
d
∼ XT =⇒ Φ(Y0) = YT

d
∼ X0

!



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt (x) on [0, T ] (pt (x) the law of Xt = X0 + σt Z)

•
.

yt =
.
σT−t σT−t ∇ log pT−t (yt )

• We can introduce the map Φ : y0 7→ yT

• Y0
d
∼ XT =⇒ Φ(Y0) = YT

d
∼ X0

∞

‰
ㆁ

憾
t
-



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt (x) on [0, T ] (pt (x) the law of Xt = X0 + σt Z)

•
.

yt =
.
σT−t σT−t ∇ log pT−t (yt )

• We can introduce the map Φ : y0 7→ yT

• Y0
d
∼ XT =⇒ Φ(Y0) = YT

d
∼ X0

¤
. 9
s

ㆁ
⑳ S



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt (x) on [0, T ] (pt (x) the law of Xt = X0 + σt Z)

•
.

yt =
.
σT−t σT−t ∇ log pT−t (yt )

• We can introduce the map Φ : y0 7→ yT

• Y0
d
∼ XT =⇒ Φ(Y0) = YT

d
∼ X0

.
 
.
 
.
 
.
 
.

↓



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt (x) on [0, T ] (pt (x) the law of Xt = X0 + σt Z)

•
.

yt =
.
σT−t σT−t ∇ log pT−t (yt )

• We can introduce the map Φ : y0 7→ yT

• Y0
d
∼ XT =⇒ Φ(Y0) = YT

d
∼ X0

.
.
.
 
.
.
 
.

P ↓



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt (x) on [0, T ] (pt (x) the law of Xt = X0 + σt Z)

•
.

yt =
.
σT−t σT−t ∇ log pT−t (yt )

• We can introduce the map Φ : y0 7→ yT

• Y0
d
∼ XT =⇒ Φ(Y0) = YT

d
∼ X0

P

อุป
ก : D



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt (x) on [0, T ] (pt (x) the law of Xt = X0 + σt Z)

•
.

yt =
.
σT−t σT−t ∇ log pT−t (yt )

• We can introduce the map Φ : y0 7→ yT

• Y0
d
∼ XT =⇒ Φ(Y0) = YT

d
∼ X0

∞
*

·
P i D



Score based Generative Models (SGM)

• X0 ∈ Rd a r.v. p0(x)

• t 7→ σt for t ∈ [0, T ] a noise schedule

• Set of densities pt (x) on [0, T ] (pt (x) the law of Xt = X0 + σt Z)

•
.

yt =
.
σT−t σT−t ∇ log pT−t (yt )

• We can introduce the map Φ : y0 7→ yT

• Y0
d
∼ XT =⇒ Φ(Y0) = YT

d
∼ X0

수 ·
P

⑩ i

.?



Needed approximation

• We don’t know p0(x)

=⇒ Don’t know pt(x)

• We don’t know ∇x log pt(x) and XT
d∼ pT

• p0(x) represented by {X i
0}i

• sθ(t, x) ≃ ∇x log pt(x) trained on {X i
0}i

Et∼q(t),i∼U(n),Z∼N (0,I)[∥sθ(t, X i
0 + σtZ )−∇x log pt(X i

0 + σtZ )∥2]

• We approximate pT (x) ∼ X0 + σT Z with π∞
d∼ σT Z



Needed approximation

• We don’t know p0(x) =⇒ Don’t know pt(x)

• We don’t know ∇x log pt(x) and XT
d∼ pT

• p0(x) represented by {X i
0}i

• sθ(t, x) ≃ ∇x log pt(x) trained on {X i
0}i

Et∼q(t),i∼U(n),Z∼N (0,I)[∥sθ(t, X i
0 + σtZ )−∇x log pt(X i

0 + σtZ )∥2]

• We approximate pT (x) ∼ X0 + σT Z with π∞
d∼ σT Z



Needed approximation

• We don’t know p0(x) =⇒ Don’t know pt(x)

• We don’t know ∇x log pt(x) and XT
d∼ pT

• p0(x) represented by {X i
0}i

• sθ(t, x) ≃ ∇x log pt(x) trained on {X i
0}i

Et∼q(t),i∼U(n),Z∼N (0,I)[∥sθ(t, X i
0 + σtZ )−∇x log pt(X i

0 + σtZ )∥2]

• We approximate pT (x) ∼ X0 + σT Z with π∞
d∼ σT Z



Needed approximation

• We don’t know p0(x) =⇒ Don’t know pt(x)

• We don’t know ∇x log pt(x) and XT
d∼ pT

• p0(x) represented by {X i
0}i

• sθ(t, x) ≃ ∇x log pt(x) trained on {X i
0}i

Et∼q(t),i∼U(n),Z∼N (0,I)[∥sθ(t, X i
0 + σtZ )−∇x log pt(X i

0 + σtZ )∥2]

• We approximate pT (x) ∼ X0 + σT Z with π∞
d∼ σT Z



Needed approximation

• We don’t know p0(x) =⇒ Don’t know pt (x)

• We don’t know ∇x log pt (x) and XT
d
∼ pT

• p0(x) represented by {X i
0}i

• sθ(t, x) ≃ ∇x log pt (x) trained on {X i
0}i

• We approximate pT (x) with π∞

• (We approximate Φ solving the equation with numerical methods)

.yt = .
σT−tσT−tsθ(t, yt)

• Initialize Ŷ0
d∼ σT Z

• Generate ŶT = Φ̂(Ŷ0)



Needed approximation

• We don’t know p0(x) =⇒ Don’t know pt (x)

• We don’t know ∇x log pt (x) and XT
d
∼ pT

• p0(x) represented by {X i
0}i

• sθ(t, x) ≃ ∇x log pt (x) trained on {X i
0}i

• We approximate pT (x) with π∞

• (We approximate Φ solving the equation with numerical methods)

.yt = .
σT−tσT−tsθ(t, yt)

• Initialize Ŷ0
d∼ σT Z

• Generate ŶT = Φ̂(Ŷ0)



Needed approximation

• We don’t know p0(x) =⇒ Don’t know pt (x)

• We don’t know ∇x log pt (x) and XT
d
∼ pT

• p0(x) represented by {X i
0}i

• sθ(t, x) ≃ ∇x log pt (x) trained on {X i
0}i

• We approximate pT (x) with π∞

• (We approximate Φ solving the equation with numerical methods)

.yt = .
σT−tσT−tsθ(t, yt)

• Initialize Ŷ0
d∼ σT Z

• Generate ŶT = Φ̂(Ŷ0)



Modeling distributions

• (Data suggest that) Data distribution is heavytail
• P(X i > t) ∼ t−α for some pixel/component (α > 0)



Example : The Frechet Distribution - Log-quantiles

• fFr (x) = αx−α−1 for x ∈ R+, α = 3
• 105 training datapoints



Example : The Frechet Distribution - Log-quantiles

• fFr (x) = αx−α−1 for x ∈ R+, α = 3
• 105 training datapoints



What’s wrong ?

Something went wrong: Tail events are under-generated

• The trained score sθ(t, x) is not a good estimator

• The initialization Y0 ∼ σT Z is very different from XT ∼ pT

• The numerical scheme to approximate Φ(y0) is problematic



What’s wrong ?

Something went wrong: Tail events are under-generated

• The trained score sθ(t, x) is not a good estimator

• The initialization Y0 ∼ σT Z is very different from XT ∼ pT

• The numerical scheme to approximate Φ(y0) is problematic



What’s wrong ?

Something went wrong: Tail events are under-generated

• The trained score sθ(t, x) is not a good estimator

• The initialization Y0 ∼ σT Z is very different from XT ∼ pT

• The numerical scheme to approximate Φ(y0) is problematic



What’s wrong ?

Something went wrong: Tail events are under-generated

• The trained score sθ(t, x) is not a good estimator

• The initialization Y0 ∼ σT Z is very different from XT ∼ pT

• The numerical scheme to approximate Φ(y0) is problematic



What’s wrong ?

Something went wrong: Tail events are under-generated

• The trained score sθ(t, x) is not a good estimator

• The initialization Y0 ∼ σT Z is very different from XT ∼ pT

• The numerical scheme to approximate Φ(y0) is problematic



Initialization problems

X0 + σT Z ∼ pT is α-heavytail distribution - π∞ is light-tailed

pT is a simple unimodal distribution - fit a heavytail model πθ on
noised data



Initialization problems

X0 + σT Z ∼ pT is α-heavytail distribution - π∞ is light-tailed

pT is a simple unimodal distribution - fit a heavytail model πθ on
noised data



Initialization problems

X0 + σT Z ∼ pT is α-heavytail distribution - π∞ is light-tailed

pT is a simple unimodal distribution - fit a heavytail model πθ on
noised data



Score estimation problem

sθ(t, x) ̸= ∇x log pt(x)

What if we use the true score ?

The real solved equation
allows
to perfectly generate the
tail.



Score estimation problem

sθ(t, x) ̸= ∇x log pt(x) What if we use the true score ?

The real solved equation
allows
to perfectly generate the
tail.



Score estimation problem

sθ(t, x) ̸= ∇x log pt(x) What if we use the true score ?

The real solved equation
allows
to perfectly generate the
tail.



Score estimation problem

The problem is that the score learns to generalize generation

But it learns to generalize on the data support

This is not an error but a reasonable behaviour of the neural net.

The denoiser doesn’t know whether the data law is heavy-tail or
compactly supported



Score estimation problem

The problem is that the score learns to generalize generation

But it learns to generalize on the data support

This is not an error but a reasonable behaviour of the neural net.

The denoiser doesn’t know whether the data law is heavy-tail or
compactly supported



Score estimation problem

The problem is that the score learns to generalize generation

But it learns to generalize on the data support

This is not an error but a reasonable behaviour of the neural net.

The denoiser doesn’t know whether the data law is heavy-tail or
compactly supported



Score estimation problem

The problem is that the score learns to generalize generation

But it learns to generalize on the data support

This is not an error but a reasonable behaviour of the neural net.

The denoiser doesn’t know whether the data law is heavy-tail or
compactly supported



Score estimation problem

The problem is that the score learns to generalize generation
But it learns to generalize on the data support

This is not an error but a reasonable behaviour of the neural net
The neural net doesn’t know whether the data law is heavy-tail or compactly supported

Therefore, to make the denoiser generate a heavy-tailed
distribution, we need to explicitly force it to model a
heavy-tailed law.



Encoding & Latent Space

• We train a score approximator on heavy-tail data {X i
0}i

• Maybe we could preprocess {X i
0}i (heavytail) to {E i

0}i

(light-tailed)

• Learn Ê0 and reverse the preprocessing to get X̂0



Encoding & Latent Space

• We train a score approximator on heavy-tail data {X i
0}i

• Maybe we could preprocess {X i
0}i (heavytail) to {E i

0}i (light-tailed)

• Learn Ê0 and reverse the preprocessing to get X̂0



Encoding & Latent Space

• We train a score approximator on heavy-tail data {X i
0}i

• Maybe we could preprocess {X i
0}i (heavytail) to {E i

0}i (light-tailed)

• Learn Ê0 and reverse the preprocessing to get X̂0

This is a viable approach only if the neural net is able to
correctly reproduce tails of a light-tailed distribution E0



Conclusions & things i didn’t talk about

• SGM are the most powerful modeling tool

• We have serious problems in modeling tails

• The problem is posed by the score function

• Optimal Transport map, properties of Unets architecture


