Deep Generative Models for hydrological time-series simulations

BHAVSAR Ferdinand?, Lionel Benoit*, Edith Gabriel®
SWGEN 2025 - Conference on Stochastic Weather Generators

03 December 2025

Mggs PSLx fj (AN‘DRA E BNP PARIBAS
s &)) | GEOLEARNING
] N RA@ wiondation @ CHAIRE 7/ Dara Scancs for o Envronment (& S%R

*INRAE, Biostatistics and Spatial Processes (Biosp) team

1/24



Context and objectives
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Application: Water quality monitoring around the Cigéo site

Source: Andra
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Context and objectives
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Application: Continuous monitoring of hydrological variables
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Context and objectives
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Application: Continuous monitoring of hydrological variables

The data are multivariate time-series with many missing values (from 2012 to 2025, 4h
between each observations).

Source: Andra
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Context and objectives
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Modeling multivariate hydrological variables with missing values

Postdoc objective: Develop a simulation method to simulate the target hydrological variables

We have two tasks to tackle:
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How do we find the red part ? ("Fill the gaps”)
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Context and objectives
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Deep generative learning: a transformation problem

Problem

Given a dataset, we want to sample new, never-seen before, convincing simulations with the
same properties as the data from the dataset
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Context and objectives
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Deep generative learning: a transformation problem

Problem

Given a dataset, we want to sample new, never-seen before, convincing simulations with the
same properties as the data from the dataset

Easy to sample Random Variable
Jd G L

Complex and unknown Random Variable
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Example of complex RV: time-series data
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Context and objectives
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Generative models: Deep learning

We approximate the transformation G with a neural network Gjy.
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Context and objectives
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Denoising Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho et al., 2020)

p(x1|To) p(za|z1) pler|zr_i)
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0* = argm@in Dy, (pg(xt,h | z¢) | p(as—p | mt,xo)) (1)
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Diffusion Models: CSDI
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CSDI: Conditional Score-based Diffusion Models for Irregular Time Series Imputation

We want a state of the art diffusion
generative model, designed for both forecasting
and imputation: CSDI (Tashiro et al., 2021).

Recent, good documentation, code available,
good reputation in the community.
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Figure 1: CSDI architecture overview (Tashiro
et al., 2021)
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Diffusion Models: CSDI
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CSDI training: Simplified overview

Real test time-serie = Compute Loss function:

B — .
[le— 2|
Extract random nb
observations : " A
Generated simulations Z
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White Noise  N(0,I) —>

where x is the training time-serie, & = Dy(e, t,2°) is the predicted time-serie, ¢ is the

diffusion time step, € is Gaussian noise, m(z) is the mask and z

b5 are the observed values.
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Diffusion Models: CSDI
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CSDI: Loss function

Training the model to learn the reverse distribution:

o* = argmeiﬂ Dx (po(xe—n | z0) | p(@i—n | 24, 20)) (2)
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Diffusion Models: CSDI
[e]e] le}

CSDI: Loss function

Training the model to learn the reverse distribution:
0* = arg min Dxr (po(ze—n | @) | plai—n | x4, 20)) (2)

It's the same as training the model to denoise x; into &g = Dy(x¢,t) (Ho et al., 2020):

£(0) = E ||z — o]’ (3)
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Diffusion Models: CSDI
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CSDI: Loss function

Training the model to learn the reverse distribution:
0* = arg min Dxr (po(ze—n | @) | plai—n | x4, 20)) (2)

It's the same as training the model to denoise x; into &g = Dy(x¢,t) (Ho et al., 2020):

£(0) = E [z — a0’ (3)
For CSDI, the loss is computed only on the masked values (Tashiro et al., 2021), i.e.:

L(#)=E |:HT6YH?9 _ gmiss

| (4)

where z'*** are the masked values, i.e. zo and £5"**% are the corresponding predicted values.

,obs !
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Diffusion Models: CSDI
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Adapting CSDI to our case

Results with the base CSDI model were disappointing.. So we made some modifications to the

architecture:
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CSDI results
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Evaluation methodology

Metrics used: RMSE, MAE, CRPS. 100 generated tests simulations.

Real test time-serie
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CSDI results
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Imputation: some outputs vizualed

Gaussian Processes Original CSDI

Our CSDI
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CSDI results
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Imputation: metrics

Imputation performance across models and missing ratios. Best value per metric highlighted in

green.
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CSDI results
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Forecasting: some outputs vizualed

16 days seen, 15 days to predict

Gaussian Processes
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CSDI results
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Forecasting: Metrics

Forecasting results for horizons 1, 2 and 3 days. Best values highlighted in green.
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CSDI results
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A problem with the method: long term forecasting and unforeseen ev

OPE90013 EC - forecasting 15 days given 16 days
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CSDI results
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Daily SIM / SAFRAN-grid Data (weather)

Data source: SAFRAN reanalysis from Météo-France (Vidal et al., 2010)

Precipitation (liquid and solid) - daily totals
Air temperature (min, max, or mean) at 2m
Wind speed (e.g. 10m)

Specific humidity or relative humidity at 2m
Global / direct / diffuse solar radiation

Snow- and soil-related variables: soil wetness index, soil water content, snow water
equivalent, evapotranspiration
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CSDI results
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Forecasting using covariates: some outputs vizualed

Without covariates
OPE90013 EC - forecasting 15 days given 16 days

With covariates
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CSDI results
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Forecasting using covariates: metrics

Forecasting results for horizons 1, 2 and 3 days. Best values highlighted in green.

Horizon Setting RMSE MAE CRPS /
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Conclusion
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Conclusion

We need to adapt the architecture of CSDI to our specific case study to obtain good results.
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Conclusion

We need to adapt the architecture of CSDI to our specific case study to obtain good results.
Our model seems to be performing better than the baselines for both imputation and
forecasting.
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Conclusion
L]

Conclusion

We need to adapt the architecture of CSDI to our specific case study to obtain good results.
Our model seems to be performing better than the baselines for both imputation and
forecasting.

Using relevant covariates (weather data) improves forecasting results.
Next steps:

@ Take into account dry periods: regime-switching diffusion models
@ Take into account the spatial component of the data

@ Sensibility Analysys for covariates selection (Yachouti et al., 2025)
@ Interpolation on the river network

@ Impact of climate change and anthropic factors
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Adapting the data to deep learning
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Deep learning does not like unormalized data. We do min-max normalization on the time-series

along the time axis:
_ z° — xfmm (5)

C —
Im(L.’L‘ €z

c
norm

xT
c
min

where ¢ = {0,C}, C is the number of variables.
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Distribution realism (Cigéo data)

Figure 2: Real data linear correlations Figure 3: Our model linear correlations
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