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Application: Water quality monitoring around the Cigéo site

Source: Andra
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Application: Continuous monitoring of hydrological variables

1 Water level

2 Temperature

3 pH

4 Conductivity at 25°C

5 Dissolved O2

6 O2 saturation

7 Nitrates concentration

8 Turbidites

9 FDom (Fluorescent Dissolved Organic
Matter) / Organical Carbon

10 PAH (Polycyclic Aromatic Hydrocarbon)

Source: Andra
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Application: Continuous monitoring of hydrological variables

The data are multivariate time-series with many missing values (from 2012 to 2025, 4h
between each observations).

Source: Andra
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Modeling multivariate hydrological variables with missing values

Postdoc objective: Develop a simulation method to simulate the target hydrological variables

We have two tasks to tackle:

How do we find the red part ? (”Fill the gaps”)
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Deep generative learning: a transformation problem

Problem
Given a dataset, we want to sample new, never-seen before, convincing simulations with the
same properties as the data from the dataset

Example of complex RV: time-series data
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Generative models: Deep learning

We approximate the transformation G with a neural network Gθ.
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Denoising Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho et al., 2020)

θ˚ “ argmin
θ

DKL

`

pθpxt´h | xtq } ppxt´h | xt, x0q
˘

(1)
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CSDI: Conditional Score-based Diffusion Models for Irregular Time Series Imputation

We want a state of the art diffusion
generative model, designed for both forecasting
and imputation: CSDI (Tashiro et al., 2021).

Recent, good documentation, code available,
good reputation in the community.

Figure 1: CSDI architecture overview (Tashiro
et al., 2021)
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CSDI training: Simplified overview

where x is the training time-serie, x̂ “ Dθpϵ, t, xobsq is the predicted time-serie, t is the
diffusion time step, ϵ is Gaussian noise, mpxq is the mask and xobs are the observed values.
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CSDI: Loss function

Training the model to learn the reverse distribution:

θ˚ “ argmin
θ

DKL

`

pθpxt´h | xtq } ppxt´h | xt, x0q
˘

(2)

It’s the same as training the model to denoise xt into x̂0 “ Dθpxt, tq (Ho et al., 2020):

Lpθq “ E
”

}x0 ´ x̂0}
2
ı

(3)

For CSDI, the loss is computed only on the masked values (Tashiro et al., 2021), i.e.:

Lpθq “ E
„

›

›

›
xmiss
0 ´ x̂miss

0

›

›

›

2
ȷ

(4)

where xmiss
0 are the masked values, i.e. x0

{xobs
0

, and x̂miss
0 are the corresponding predicted values.
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Adapting CSDI to our case

Results with the base CSDI model were disappointing.. So we made some modifications to the
architecture:
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Evaluation methodology

Metrics used: RMSE, MAE, CRPS. 100 generated tests simulations.
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Imputation: some outputs vizualed
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Imputation: metrics

Imputation performance across models and missing ratios. Best value per metric highlighted in
green.

Miss. Ratio Model RMSE MAE CRPS

0.25
Gaussian Proc. 0.2205 0.0556 0.0542

CSDI 0.3584 0.0927 0.0886
Our Model 0.1645 0.0355 0.0323

0.5
Gaussian Proc. 0.2390 0.0677 0.0660

CSDI 0.3658 0.1034 0.0972
Our Model 0.1900 0.0420 0.0381

0.75
Gaussian Proc. 0.3733 0.0995 0.0986

CSDI 0.4236 0.1343 0.1255
Our Model 0.2664 0.0591 0.0542

0.9
Gaussian Proc. 0.4857 0.1582 0.1578

CSDI 0.5320 0.2432 0.2265
Our Model 0.3558 0.1002 0.0928
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Forecasting: some outputs vizualed

16 days seen, 15 days to predict
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Forecasting: Metrics

Forecasting results for horizons 1, 2 and 3 days. Best values highlighted in green.

Horizon Model RMSE MAE CRPS

1 day
GP 0.5013 0.1398 0.1388

Original CSDI 0.3167 0.0809 0.0783
Our Architecture 0.3129 0.0799 0.0768

2 days
GP 0.4979 0.1736 0.1682

Original CSDI 0.4526 0.1614 0.1516
Our Architecture 0.3918 0.1150 0.1096

3 days
GP 0.5540 0.2006 0.2010

Original CSDI 0.5461 0.2388 0.2223
Our Architecture 0.4645 0.1500 0.1452
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A problem with the method: long term forecasting and unforeseen events
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Daily SIM / SAFRAN-grid Data (weather)

Data source: SAFRAN reanalysis from Météo-France (Vidal et al., 2010)

Precipitation (liquid and solid) - daily totals

Air temperature (min, max, or mean) at 2m

Wind speed (e.g. 10m)

Specific humidity or relative humidity at 2m

Global / direct / diffuse solar radiation

Snow- and soil-related variables: soil wetness index, soil water content, snow water
equivalent, evapotranspiration
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Forecasting using covariates: some outputs vizualed
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Forecasting using covariates: metrics

Forecasting results for horizons 1, 2 and 3 days. Best values highlighted in green.

Horizon Setting RMSE MAE CRPS

6
w/o Cov. 0.3129 0.0799 0.0768
with Cov. 0.2733 0.0719 0.0661

12
w/o Cov. 0.3918 0.1150 0.1096
with Cov. 0.3040 0.0954 0.0871

18
w/o Cov. 0.4645 0.1500 0.1452
with Cov. 0.3389 0.1172 0.1069

21/24



Context and objectives Diffusion Models: CSDI CSDI results Conclusion References

Conclusion

We need to adapt the architecture of CSDI to our specific case study to obtain good results.
Our model seems to be performing better than the baselines for both imputation and
forecasting.
Using relevant covariates (weather data) improves forecasting results.
Next steps:

Take into account dry periods: regime-switching diffusion models

Take into account the spatial component of the data

Sensibility Analysys for covariates selection (Yachouti et al., 2025)

Interpolation on the river network

Impact of climate change and anthropic factors
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Adapting the data to deep learning

Deep learning does not like unormalized data. We do min-max normalization on the time-series
along the time axis:

xc
norm “

xc ´ xc
min

xc
max ´ xc

min

(5)

where c “ t0, Cu, C is the number of variables.
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Distribution realism (Cigéo data)

Figure 2: Real data linear correlations Figure 3: Our model linear correlations
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