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Introduction (1/3): orographic rainfall

Orographic rainfall:

Precipitatip-

Orographic precipitation 1s ubiquitous:
— Mediterranean climate: Sierra Navada (Spain & USA)
— Temperate climate: Alps
— Tropical climate: Andes & High tropical islands 1/ 14



Introduction (1/3): orographic rainfall

Orographic rainfall:

Precipitatip-

And impacts rainfall statistics:
— Rainfall statistics vary in space (occurrence, intensity, spatial dependence)

— No straightforward link with covariates (elevation, slope, weather)
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Introduction (2/3): the example of Hawai‘i Island

Hawai‘1 is a textbook study area for orographic rainfall:
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Introduction (3/3): objectives of the study

Stochastic rainfall model accounting for orographic effects
— Non-stationary spatial model to capture the variation of rainfall statistics

— Fully non-stationary: marginal distribution and spatial dependencies

Data-driven inference of non-stationary parameters

— No use of covariates in the spatial model

— Leverage geostatistics to learn a continuous spatial model from sparse obs.

Set-up
— Daily resolution and focus on spatial statistics

— Designed for Hawai ‘i, but (hopefully) applicable to any mountain range
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Rainfall model (1/4): overview

Split modeling into two separate components: temporal and spatial

1 Covaﬂate 1 ! A !

Temporal model [very basic] YR VATRTA A
— The time line is clustered into Rain Types RN VN A
— Rain type occurrence conditioned to covariates ? |
— Daily rainfall fields are independent conditional téool(’)zam Types e e o

Spatial model [focus of the talk, more comprehensive] Spatial ra?fau model
— Trans-Gaussian geostatistics if;v? ﬁ‘

— Fully non-stationary model (marginal and spatial structure) : %{\39
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Rainfall model (2/4): simulation of rain type occurrence

Rain type time series are simulated by Multiple-Points Statistics simulation
(MPS = pattern-based resampling of a training dataset)

(b) Scan the training dataset

Training dataset until a good match 1s found

| I I 0 | .
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Simulation grid
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From Benoit et al. (2020) Nonstationary stochastic rain type generation: accounting for climate drivers. 5/14



Rainfall model (3/4): trans-Gaussian geostatistics

Trans-Gaussian geostatistics split the rain signal (R) in two components:

Y ~MVN(O0,1,C,) and R =wy(Y)
Latent field: .
Y ~ MVN(0,1,C,) Transform function:
Models spatial dependencies R =y(Y)

through the covariance function C, Models rainfall occurrence and intensity

Latent ﬁeld Y) Ramfall ﬁeld (R)
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Rainfall model (3/4): trans-Gaussian geostatistics

Trans-Gaussian geostatistics split the rain signal (R) in two components:

Y ~MVN(O0,1,C,) and R =wy(Y)
Latent field: Transform function:
Models spatial dependencies Models rainfall occurrence and intensity

through the covariance function C,

\ parameterized by the mixture of
an atom of zeros (truncation)
and a Gamma distribution

1 (||h||)",,{ (uhn) R()=0 if Y(s) <ag

r(v)2v-1\ p p R(s) = Gamma " (®(Y(s)); k,0) if Y(s) > ag

C, parameterized by
a Matérn covariance function

Cy (|[h][: v, p) =
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Rainfall model (4/4): making the spatial model non-stationary

Non-stationary model to capture the spatial variation of rain statistics:
=> Model parameters are made location-dependent:
— Yy => Vs and Cy => Cys (with s the location of interest)

— Cys requires a valid model of non-stationary covariance

[Paciorek & Schervish, 2006, spatial modelling using a new class of non-stationary covariance functions,
Environmetric, 17:483-506]

Non-stationary Non-stationary y and Cy
N . * Vertical
0 patterns

30 3

= W20 ‘ L
1 "ﬂ.i 10

|

20

High intensity Low inznsily 7/ 14



Rainfall model (4/4): making the spatial model non-stationary

Non-stationary model to capture the spatial variation of rain statistics:
=> Model parameters are made location-dependent:
— Yy => Vs and Cy => Cys (with s the location of interest)

— Cys requires a valid model of non-stationary covariance

[Paciorek & Schervish, 2006, spatial modelling using a new class of non-stationary covariance functions,
Environmetric, 17:483-506]

I=(vi+vj) /2 IS+ X ichid
Crisis;) = jr(v,-)rj(v,-) i |2 ik ;Ej (‘/Q_J) - K (\/Q_f)
= - 2 2
with L, =V;xA; xV,I: V., = V'}’l,;j"j'}’z,iz W A= Y1,i” + Y20 |

IS YR
and with Qij-_(s;—sj—)T( - ") (si —s;)
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In practice (1/2): model calibration

Rain types are delineated by GMM clustering based on rain gauge obs.

Parameters of the spatial model are estimated by likelthood maximization
— Overall 9 parameters (stationary case)

Estimation of model parameters from sparse observations
— Marginal distribution (ys): estimation at gauge locations + Ordinary Kriging
— Covariance function (Cys): estimation within climate division + Spline interp.

AN Hawai‘i climate divisions
to => hypothesis of local stationarity of the covariance
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In practice (2/2): stochastic rainfall generation

(1) Unconditional simulation of the latent field (Y)

— Cholesky decomposition of the covariance matrix (small simulation grids)

— Spectral simulation - Gaussian mixture approach (large simulation grids)

[cf. Talk Denis Allard on Tuesday].

(2) Transformation of the latent field into rain intensities: R(s) = ¥ (Y (s))

.} Latent field value

4 Rainintensity (mm/h)




Results (1/4): The 6 Rain types of Hawai‘l (and associated parameters)

Rain Type 2 Rain Type |

Rain Type 3

From 20 years of rain gauge observations : 2000 - 2019
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Marginal distribution - a0

Marginal distribution - &

15 3
Mean annual . | |
50 freq. : 17.7% ‘Ce® a 1 .
S { |
L] 10 1
0 {. NS . s |
" * -‘.. i:. 0 |
20 e 5 : ! '
0 _ 0 3 ]
JFMAMIJI JTASOND
—~ 15 3
Mean annual e | 1 |
60f freq.: 5.4% ‘o 2
i t |
b L] 10 1
40, {:' RAAY- 2] ' '
) e 0 0| !
| ‘ .0. ib
20 o 5 A1 1
0 TN — - 0 3| ]
JTJFMAMITASOND
- 15 3
Mean annual [, |
60/ fregq.: 5.0% $e 2
% |
‘-ﬂ * 5 10 1
] . |
40, . ® O Tl
\ s @ . 0 |
‘_ .‘Q} 09‘ .
20 . Pl - L
_ Yoy, 2|
\_”_\4—/—- 7 |
0 0 -3

JFTMAMI JTASOND

Marginal distribution - k

_ Vibackground) and range (ellipses)

b

L5

n q

0.5]

b

- .

0.0

Lo
iﬂi
: 0.0
- ll_ﬂ
H{JS
: 0.0

1.0

N{H

0.0

10/ 14



Results (1/4): The 6 Rain types of Hawai‘l (and associated parameters)

From 20 years of rain gauge observations : 2000 - 2019

Monthly frequency of occurrence (%)

Mean daily rainfall (mm/dav)
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Results (2/4): Point-scale rainfall statistics

Mean daily rainfall (mm/day) Frequency of occurrence (%)  Qsos daily rainfall | wet day =~ Qos®s daily rainfall | wet day
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Results (3/4): Spatial dependencies within rainfall fields

Spatlal patterns of rain occurrence: J accard index with pmnt *

3

Spatial patterns of rain intensity: Paerson correlation with point *
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Results (4/4): Spatial variability of the temporal behavior of rainfall

Gauge location
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Results (4/4): Spatial variability of the temporal behavior of rainfall

Gauge location 9-days rainfall
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Conclusion & perspectives:

Non-stationary trans-Gaussian geostatistical simulations:
— Reproduce the statistical signature of daily rainfall in mountains

— If a dense rain gauge network is available can learn spatial non-stationarity
in a data-driven way (no need for covariates)

=> Very flexible model for daily rainfall fields

Next step: rainfall generation in a non-stationary climate

— Which part of the model should be made non-stationary in time?
(Rain Type occurrence? Marginal distribution? Spatial dependencies?)

— Which conditioning scheme for which component?

— Which covariates (and how to bias-correct them?)
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Thank you for your attention :-)

Next ste .ramfall 0' ation 11 Iy climate

= thch vart of 1 _ . iade non-stationary in time?
| ] bution? Spatial dependenciest———-_
for which component?
""# to blas—correct them?)
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