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Introduction & motivation
€000

A multivariate spatio-temporal SWG

» Talk by Said Obakrim, after the coffee break

> Region of interest: PACA, highly
non-stationary

» 6 daily variables: precipitation, humidity,
radiation, wind, min and max temperature

» SAFRAN reanalysis data (8 km x 8 km),
from 2012 to 2021

> 498 pixels x 6 variables x 3652 days
~ 7.5 M data

Obakrim S., Benoit L. & Allard D. (2025) A multivariate and space-time stochastic weather generator using a latent Gaussian
framework. Stochastic Environmental Research and Risk Assessment. doi.org/10.1007/s00477-024-02897-8
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Introduction & motivation
0000

Motivation

We need

1. covariance functions in complex settings: spatio-temporal, multivariate, nonstationary;
sometimes all at once

2. Together with simulation techniques for very large number of (spatial x temporal) sites
3. Not necessarily on grids

State of the art:
» Cholesky decomposition is limited to N < 10*

> Sparse approximations, low rank approximations — impact on the covariance function; rarely
avaliable in complex settings

» Circulant embedding methods using FFT — limited to stationary covariances and simulations
on regular grids

— There is a need for more versatile methods
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Motivation

The way forward

» Start from the spectral simulation method
» Reuvisit this method with a Gaussian mixture perspective

» These simulation algorithms are constructive arguments for defining new classes of
covariance functions in these complex settings

Allard, D., Benoit, L., & Obakrim, S. (2025). Modeling and simulating spatio-temporal, multivariate and nonstationary Gaussian

Random Fields: a Gaussian mixtures perspective. Preprtint https://hal.inrae.fr/hal-05034982
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Introduction & motivation
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1. Introduction: reminders on the spectral method and their extensions
2. Focus on Gaussian mixtures
3. Nonstationarity: a general result generalizing the Paciorek-Shervish construction

4. The full combo: new nonstationary, multivariate, spatio-temporal Gaussian Random Fields
(GRFs)
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Reminders
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Reminders
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The "vanilla” spectral method
Shinozuka (1971), Matheron (1973)

Use Bochner Theorem,
C(h) = / exp(ih'w)dp(w), ¥h € R,
RA

or
C(h) = / cos(h'w)dpu(w), vh € R
R

7130
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The "vanilla” spectral method
Shinozuka (1971), Matheron (1973)

Use Bochner Theorem,
C(h) = / exp(ih'w)dp(w), ¥h € R,
RA

or
C(h) = / cos(h'w)dpu(w), vh € R
R

Then,

Z.(s) = cos (Q}s n q>,), Q ~p, & ~U02r), aliid

is approximately a GRF with expectation 0 and covariance function C

7130
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Extensions of the spectral method

Sonly—
Shinozuka,
Matheron (1973)
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Extensions of the spectral method

MV — Emery et al.
(2016)

Multivariate

Sonly—
Shinozuka,
Matheron (1973)

See Emery et al. (2016)
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Extensions of the spectral method

o>
i

NS - MV — Emery et
al. (2018)

MV — Emery et al.
(2016)

Multivariate

Sonly—
Shinozuka,
Matheron (1973)

See Emery et al. (2016) and Emery and Arroyo (2018)
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Extensions of the spectral method
NS - MV — Emery et
al. (2018)

MV — Emery et al.
(2016)

Multivariate

Sonly— = ST—Allard et al.
shinozuka, m (2020)

Matheron (1973)

See Allard et al. (2020)
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Extensions of the spectral method

NS - MV — Emery et
al. (2018)

MV — Emery et al. ST- MV — Allard et al.
(2016) (2022)

Multivariate
Multivariate

Sonly— = ST—Allard et al.
Shinozuka, “ (2020)
Matheron (1973)

See Allard et al. (2020) and Allard et al. (2022)
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Extensions of the spectral method

NS - MV — Emery et NS —ST-MV
al. (2018) Allard, Benoit &
,@5'.\0 Obakrim, 2025+
o
N0

MV — Emery et al. ST- MV — Allard et al.
(2016) (2022)

Multivariate
Multivariate

Sonly— = llard et
Shinozuka, “ (2020)

Matheron (1973)

This work
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Extensions of the spectral method

NS - MV — Emery et
al. (2018)

NS -ST-MV
i Allard, Benoit &
Obakrim, 2025+

ST- MV — Allard etia
(2022)

MV — Emery et al.
(2016)

jvariate

Multivariate

M

Sonly— =
shinozuka, T

Matheron (1973)

This work
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Gaussian mixtures
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Gaussian mixtures

Schoenberg (1938)

Define C.. the class of continuous isotropic covariance functions valid on R?, vd > 1. Then, ¢ € Coo
if and only if

é(h) = / exp(— ||| [2€)f(€)d
R+
f(¢) is the Gaussian scale mixture

Consequences

» A Gaussian mixture for the covariance function entails the same Gaussian mixture of the
spectral density.

> Use Gaussian mixtures in spectral simulations.
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Gaussian mixtures
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Simulation algorithms for stationary univariate spatial GRFs

Spectral simulation
Require: C € Coo, X~ "/2 and p
Require: A set of points, S € R?
Require: A large number L

: for/=1to Ldo

Simulate Q, ~

Simulate ®; ~ U(0, 27)

: end for

: For each s € S return

Z(s) = cos(X72Qfs + @)
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Gaussian mixtures
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Simulation algorithms for stationary univariate spatial GRFs

Spectral simulation Gaussian mixture simulation
Require: C € Coo, £ /2 and 1 Require: C <€ C.. T2 and f
Require: A set of points, S € R? Require: A set of points, S € R?
Require: A large number L Require: A large number L

:for/=1toLdo
Simulate Q, ~
Simulate ®; ~ U(0, 27)
. end for

: Foreach s € S return

:for/=1to Ldo

Simulate & ~ f

Simulate ; ~ /2§N4(0, 1g)
Simulate &, ~ (0, 27)

. end for

: Foreach s € S return

T
o g s @ 2

Z(s) = cos(X72Qfs + @) ;
Z(s) = cos(Zq/fos + @)
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Some covariance functions

Matérn covariance

2

Cm(h) = 5;5;F65

(x[[h[[)"K. (I [h[])

1
pm(w) o (1 + [|w][2/r2)"+9/2

_ K/Z U£,1,l, 75;2/4.5
(&) = (T) e

Hence

Step 2 : Simulate & ~ IG(v, K*/4)
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Introduction & motivatior

Non-stationarity

Some covariance functions

Matérn covariance

2
Calh) = iy (eI K el )
1
pm(w) o< (1 + [|w][2/r2)"+9/2
2\ Y ¢¢—1—v 2
f/vl(f) _ <%) gr(y) e " /4¢
Hence

Step 2 : Simulate & ~ IG(v, K*/4)

Cauchy covariance

Ceth) = (1+alhl?) "
ue = Unknown
fo(§) = a’T(y)'¢le /s
Hence

Step 2 : Simulate & ~ G(v, a).
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Main take aways

Use Gaussian mixtures

> Almost identical simulation algorithm
> Restricted to kernels in C
> Paves the way to many extensions : temporal, multivariate, non-stationary
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Non-stationarity
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Non-stationarity
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General result
Allard et al. (2025+)

> Let ¢ € C, with a Gaussian mixture belonging to the exponential family of pdfs
f(¢:6) = h(o) exp (—£(6)'T(¢)) (1

Includes Gamma (Cauchy cov.), Inverse Gamma (Matérn cov.), Beta, Gaussian, Inverse
Gaussian, etc.

> Let = '/? be anisotropy matrices, Vs € R¢
> Let f(-, 0s) be a family of mixtures as in (1)
> Set f; be an instrumental density: any pdf whose support is R™. One canset fy = f(-,0 = 1)

~
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Introduction & motivatior

General result
Allard et al. (2025+)

Proposition

Under the condition above, define:

2f(¢; 0s) | HE (R)
fi(

t
) u,i(ﬂ) cos(Q's + P).

Z(s) =

Then, its non-stationary covariance function is
C(s,8") = |Zs|"*|Zo | /4|50 |72 C(Zs 0 T/2(s — §); 05 51),
with Xs o = (Xs + X¢/)/2, and where 6; ¢ is such that

(00) = O ELE)
= Generalizes the construction in Paciorek and Schervish (2006) and Emery and Arroyo (2018)
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Full combo

23/30



Full combo
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Illustration

Variable 1
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Illustration
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A simulation algorithm for NS MV S-T GRFs

Require: A family of scale mixtures, f(-; ), belonging to the exponential family
Require: Parameters 8;; , and anisotropy matrices Z,,T;/ 2; covariance matrices ox = LyL!
Require: Pseudo variogram ~. Non separability parameter b ; § > 0
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A simulation algorithm for NS MV S-T GRFs

Require: A family of scale mixtures, f(-; ), belonging to the exponential family

Require: Parameters 8;; , and anisotropy matrices Z” x/ 2; covariance matrices ox = LyL!
Require: Pseudo variogram ~. Non separability parameter b ; 6 > 0

1: Set fy := f(0), e.g. for 6 =1

2: for/=1toLdo

3 Simulate a p-variate RF Z1 ; with matrix-valued covariance function Cr(f) = (1 + ~(t) 7
4 Simulate a p-variate RF W, = [W, ,] _ 1 With pseudo-variogram -,

5. Simulate & ~ f;

6: Simulate V; ~ Ny(0,1y); set Q, = 1/2¢,V,

7:  Simulate ®; ~ 1/(0, 27); Simulate A; ~ Np(0, I)

8: end for
9: Foreachx = (s,t) € S,andfori=1,...,p, return
pointwise correlation
% (0.0 = 2oty @) | EE RV o e e o + Wil
’ MUV TR | uf (vav) V2

non sep. space-time

T non-stationary importance weights
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Nonstationary multivariate space-time model

Theorem (Allard et al., 2025+)

Let us denote x = (s, ). Then,

ajj, —1/2
Ci(s1,82; ti, &) = [Ziix, |*|Zjx, \1/47“\,. ; X1X|21/2 Pi (Afj,x{,xz (81 — 82): 6x, ”‘2>
,X1,X2

where
Aijvxth = (Ziiﬂh + zfl?xz)/z + ’W]’(h - tZ)Id

» Proof: it is the covariance resulting from the Algorithm above
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Final words

» We propose a change of perspective: from spectral representation to Gaussian mixture
representation

> It paves the way to general theorem allowing for the construction of a new and wide class of
nonstationary covariance functions

» Two well separated steps: i) stochastic generation; ii) projection onto S

v

The second step is massively parallelizable

» Many possible extensions: non-stationarity in time, including transport and advection, non
Euclidean spaces, etc.
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Preprint

Allard, D., Benoit, L., & Obakrim, S. (2025). Modeling and simulating spatio-temporal, multivariate and
nonstationary Gaussian Random Fields: a Gaussian mixtures perspective. Preprint
https://hal.inrae.fr/hal-05034982. With Statistical Science (minor revisions submitted)

Ofe=40
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