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A multivariate spatio-temporal SWG

▶ Talk by Saı̈d Obakrim, after the coffee break
▶ Region of interest: PACA, highly

non-stationary
▶ 6 daily variables: precipitation, humidity,

radiation, wind, min and max temperature
▶ SAFRAN reanalysis data (8 km × 8 km),

from 2012 to 2021
▶ 498 pixels × 6 variables × 3652 days

≃ 7.5 M data
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Obakrim S., Benoit L. & Allard D. (2025) A multivariate and space-time stochastic weather generator using a latent Gaussian

framework. Stochastic Environmental Research and Risk Assessment. doi.org/10.1007/s00477-024-02897-8
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Motivation

We need

1. covariance functions in complex settings: spatio-temporal, multivariate, nonstationary;
sometimes all at once

2. Together with simulation techniques for very large number of (spatial × temporal) sites

3. Not necessarily on grids

State of the art:
▶ Cholesky decomposition is limited to N < 104

▶ Sparse approximations, low rank approximations → impact on the covariance function; rarely
avaliable in complex settings

▶ Circulant embedding methods using FFT → limited to stationary covariances and simulations
on regular grids

↪→ There is a need for more versatile methods
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Motivation

The way forward

▶ Start from the spectral simulation method
▶ Revisit this method with a Gaussian mixture perspective
▶ These simulation algorithms are constructive arguments for defining new classes of

covariance functions in these complex settings

Allard, D., Benoit, L., & Obakrim, S. (2025). Modeling and simulating spatio-temporal, multivariate and nonstationary Gaussian

Random Fields: a Gaussian mixtures perspective. Preprtint https://hal.inrae.fr/hal-05034982
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Outline

1. Introduction: reminders on the spectral method and their extensions

2. Focus on Gaussian mixtures

3. Nonstationarity: a general result generalizing the Paciorek-Shervish construction

4. The full combo: new nonstationary, multivariate, spatio-temporal Gaussian Random Fields
(GRFs)
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The ”vanilla” spectral method
Shinozuka (1971), Matheron (1973)

Use Bochner Theorem,

C(h) =
∫
Rd

exp(ihtω)dµ(ω), ∀h ∈ Rd ,

or
C(h) =

∫
Rd

cos(htω)dµ(ω), ∀h ∈ Rd .

Then,

Z̃L(s) =

√
2
L

L∑
l=1

cos
(
Ωt

l s +Φl

)
, Ωl ∼ µ, Φl ∼ U(0, 2π), all i.i.d

is approximately a GRF with expectation 0 and covariance function C
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Extensions of the spectral method
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Extensions of the spectral method

See Emery et al. (2016)
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Extensions of the spectral method

See Emery et al. (2016) and Emery and Arroyo (2018)
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Extensions of the spectral method

See Allard et al. (2020)
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Extensions of the spectral method

See Allard et al. (2020) and Allard et al. (2022)
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This work
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Gaussian mixtures

Schoenberg (1938)

Define C∞ the class of continuous isotropic covariance functions valid on Rd , ∀d ≥ 1. Then, ϕ ∈ C∞
if and only if

ϕ(h) =
∫
R+

exp(−||h||2ξ)f (ξ)dξ

f (ξ) is the Gaussian scale mixture

Consequences
▶ A Gaussian mixture for the covariance function entails the same Gaussian mixture of the

spectral density.
▶ Use Gaussian mixtures in spectral simulations.
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Simulation algorithms for stationary univariate spatial GRFs

Spectral simulation

Require: C ∈ C∞, Σ−1/2 and µ
Require: A set of points, S ∈ Rd

Require: A large number L
1: for l = 1 to L do
2: Simulate Ωl ∼ µ
3: Simulate Φl ∼ U(0, 2π)
4: end for
5: For each s ∈ S return

Z̃ (s) =

√
2
L

L∑
l=1

cos
(
Σ−1/2Ωt

l s +Φl
)

Gaussian mixture simulation

Require: C ∈ C∞ Σ−1/2 and f
Require: A set of points, S ∈ Rd

Require: A large number L
1: for l = 1 to L do
2: Simulate ξl ∼ f
3: Simulate Ωl ∼

√
2ξlNd(0, Id)

4: Simulate Φl ∼ U(0, 2π)
5: end for
6: For each s ∈ S return

Z̃ (s) =

√
2
L

L∑
l=1

cos
(
Σ−1/2Ωt

l s +Φl
)
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Some covariance functions

Matérn covariance

CM(h) =
σ2

2ν−1Γ(ν)
(κ||h||)νKν(κ||h||)

µM(ω) ∝ 1
(1 + ||ω||2/κ2)ν+d/2

fM(ξ) =

(
κ2

4

)ν
ξ−1−ν

Γ(ν)
e−κ2/4ξ.

Hence

Step 2 : Simulate ξl ∼ IG(ν, κ2/4)

Cauchy covariance

CC(h) =
(

1 + a||h||2
)−ν

µC = Unknown

fC(ξ) = a−νΓ(ν)−1ξν−1e−ξ/a

Hence

Step 2 : Simulate ξl ∼ G(ν, a).
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Main take aways

Use Gaussian mixtures

▶ Almost identical simulation algorithm
▶ Restricted to kernels in C∞

▶ Paves the way to many extensions : temporal, multivariate, non-stationary
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General result
Allard et al. (2025+)

▶ Let ϕ ∈ C∞, with a Gaussian mixture belonging to the exponential family of pdfs

f (ξ;θ) = h(θ) exp
(
−ℓ(θ)tT (ξ)

)
(1)

Includes Gamma (Cauchy cov.), Inverse Gamma (Matérn cov.), Beta, Gaussian, Inverse
Gaussian, etc.

▶ Let Σ−1/2
s be anisotropy matrices, ∀s ∈ Rd

▶ Let f (·,θs) be a family of mixtures as in (1)
▶ Set f1 be an instrumental density: any pdf whose support is R+. One can set f1 = f (·,θ = 1)
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General result
Allard et al. (2025+)

Proposition

Under the condition above, define:

Z (s) =

√
2f (ξ;θs)

f1(ξ)

√√√√µG
Σs
(Ω)

µG
Id
(Ω)

cos
(
Ωts +Φ

)
.

Then, its non-stationary covariance function is

C∗(s, s′) = |Σs|1/4|Σs′ |1/4|Σs,s′ |−1/2C(Σs,s′
−1/2(s − s′);θs,s′),

with Σs,s′ = (Σs +Σs′)/2, and where θs,s′ is such that

ℓ(θs,s′) =
ℓ(θs) + ℓ(θs′)

2

⇒ Generalizes the construction in Paciorek and Schervish (2006) and Emery and Arroyo (2018)
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Illustration
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Illustration
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A simulation algorithm for NS MV S-T GRFs

Require: A family of scale mixtures, f (·;θ), belonging to the exponential family
Require: Parameters θii,x and anisotropy matrices Σ

−1/2
ii,x ; covariance matrices σx = LxLt

x
Require: Pseudo variogram γ. Non separability parameter b ; δ > 0
1: Set f1 := f (θ), e.g. for θ = 1
2: for l = 1 to L do
3: Simulate a p-variate RF Z T ,l with matrix-valued covariance function CT (t) = (1 + γ(t))−δ

4: Simulate a p-variate RF W l = [W l,i ]
p
i=1 with pseudo-variogram γb

5: Simulate ξl ∼ f1
6: Simulate V l ∼ Nd (0, Id ); set Ωl =

√
2ξl Vl

7: Simulate Φl ∼ U(0, 2π); Simulate Al ∼ Np(0, Ip)
8: end for
9: For each x = (s, t) ∈ S, and for i = 1, . . . , p, return

Z̃L,i (s, t) =

√
2
L

L∑
l=1

Z T ,l,i (t)

√
fii,x(ξl )

f1(ξl )

√√√√√µG
Σii,x

(
√

2Vl )

µG
Id
(
√

2Vl )
(LxAl )i cos

(
Ωt

l s +Φl +
∥Vl∥√

2
W i (t)

)

non-stationary importance weights

pointwise correlation

non sep. space-time
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Nonstationary multivariate space-time model

Theorem (Allard et al., 2025+)

Let us denote x = (s, t). Then,

Cij(s1, s2; t1, t2) = |Σii,x1 |
1/4|Σjj,x2 |

1/4 σij,x1x2

|Λij,x1,x2 |1/2 ϕij

(
Λ−1/2

ij,x1,x2
(s1 − s2);θx1,x2

)
where

Λij,x1,x2 = (Σii,x1 +Σjj,x2)/2 + γ ij(t1 − t2)Id

▶ Proof: it is the covariance resulting from the Algorithm above
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Final words

▶ We propose a change of perspective: from spectral representation to Gaussian mixture
representation

▶ It paves the way to general theorem allowing for the construction of a new and wide class of
nonstationary covariance functions

▶ Two well separated steps: i) stochastic generation; ii) projection onto S
▶ The second step is massively parallelizable
▶ Many possible extensions: non-stationarity in time, including transport and advection, non

Euclidean spaces, etc.
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Preprint
Allard, D., Benoit, L., & Obakrim, S. (2025). Modeling and simulating spatio-temporal, multivariate and
nonstationary Gaussian Random Fields: a Gaussian mixtures perspective. Preprint
https://hal.inrae.fr/hal-05034982. With Statistical Science (minor revisions submitted)
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