Deep kernel learning for geostatistics

Thomas Romary, Nicolas Desassis & Solal Raymondjean

thomas.romary@minesparis.psl.eu

Centre de Géosciences, Equipe Géostatistique

JDS 2025
Mﬁ; | PSL* ;j &) @M i BNP PARIBAS
<&)) | GEOLEARNING
IN I zA@ Mmggaptle%S -, CHAIRE /// Data Science for the Environment QR %WR

1/19



Geostatistics in a nutshell

Main objectives
@ model a natural variable of interest, seen as a regionalized variable
z(z), z € X C R? over space(-time)
@ make predictions at unobserved locations

@ quantify uncertainty
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Geostatistics in a nutshell

Main objectives
@ model a natural variable of interest, seen as a regionalized variable
z(z), z € X C R? over space(-time)
@ make predictions at unobserved locations

@ quantify uncertainty

Hypothesis

z is a realization of a random field Z
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Gaussian Processes Z(r), v € X C R¢

Z = (Z(x1),...,Z(xy)) is a Gaussian vector
Z ~ N(u, ), with
o u=E(2)
° ()i = Cov(Z(zi), Z(x;)) = Co(|zi — ;1)
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Gaussian Processes Z(r), v € X C R¢

Z = (Z(x1),...,Z(xy)) is a Gaussian vector
Z ~ N(u, ), with
p=E(Z)

(0)ij = Cov(Z (i), Z(x5)) = Co(|zi — ;1)

Maximum-likelihood estimation

(fi, 8) = argmin,, g log(detXg) + (Z — p)'Sy " (Z — p)
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Gaussian Processes Z(r), v € X C R¢

= (Z(x1),...,Z(zy)) is a Gaussian vector

~ N(p, X ) W|th

o n=E(Z)

® (Xg)ij = Cov(Z(xi), Z(x;)) = Co(|xi — x;])

Maximum-likelihood estimation

(fi, 8) = argmin,, g log(detXg) + (Z — p)'Sy " (Z — p)

Conditioning (prediction)

Z(xr)|Z(x7) ~ N(Z%,3%), with T'N D = & such that
o Z*(zr) = pur + SrpEpp(Z (D) — kD)
o T4 =S — SrpS5pEpr
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Limitations

NOAA/NESDIS GEQ—=POLAR BLENDED 5 ki SST ANALYSIS
FOR THE US ATLANTIC

o GPs generally assume a stationary covariance function,
which may not be appropriate for all spatial data :
Cov(Z(z:), Z(x;)) = Collzi — ;)

Matérn covariance | N | |
) = g2227 (lim Ti—T;
C(mz,ib']) =0 W <T> KV <T

@ GPs can be computationally expensive for large datasets
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Non stationary covariance constructions

Convolution models

Cov(Z // fa(u,t) fy(u,t) fr(t)dudt
oy (14 q1/4 | 2 2y TN @, (z — y) ey < _ >
Clz,y) = [X] |Zy| B \/I’(V(aj))F(V(y)) K (z,y) wa(ac Y)

Varying parameters in SPDE
(K2 = VH,V)?Z(z) = W ()

Space deformation

Z(x) = Z(f(x)) = Cov(Z(x), Z(y)) = C(f(z),f(y))
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Space Deformation
Relax the stationarity assumption

Co(xi,x;) = C(|fy(xi) — fo(x;)])
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Space deformation example: left geographical space, right deformed space

= fy is a transport map
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Formalization

@ The sampling design X = (x1,...,x,) is now considered random
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Formalization

@ The sampling design X = (x1,...,x,) is now considered random

@ We want to learn a transport map fy (piecewise ') such that the covariance
function of Z(x) is stationary and isotropic in the deformed space

:X:g = {fg(aj), T € :X:}
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Formalization

@ The sampling design X = (x1,...,x,) is now considered random

@ We want to learn a transport map fy (piecewise ') such that the covariance
function of Z(x) is stationary and isotropic in the deformed space

Xog = {fo(z), v € X}
@ In other words, we want to learn the joint distribution of Z and X
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Formalization

@ The sampling design X = (x1,...,x,) is now considered random

@ We want to learn a transport map fy (piecewise ') such that the covariance
function of Z(x) is stationary and isotropic in the deformed space
Xy = {fg(aj), T € X}

@ In other words, we want to learn the joint distribution of Z and X

@ The likelihood writes
p(Z,X) =p(Z|X)p(X) = N(Z; p, Xg)pz(X)

given some prior p, over X (e.g. uniform)
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Normalizing Flows

Based on a recursive application of the change of variable formula:

pe(u) = pa(fy " (u))ldet 1 (u)]

o fy is a diffeomorphism (piecewise C!)

@ fpis a NN trained by maximum likelihood estimation
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Normalizing Flows

Based on a recursive application of the change of variable formula:

pe(u) = pa(fy " (u))ldet 1 (u)]

o fy is a diffeomorphism (piecewise C!)

@ fpis a NN trained by maximum likelihood estimation

Example: RealNVP
Stack affine coupling layers of the form

Yi.d = X1:d
Yd+1:D = Xd+1:0 © exp (s(X1.4)) + t(X1.4),

where s and t are dense feedforward NN, alternating between the variables
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Scaling to large datasets

Several methods have been proposed to scale Gaussian processes to large datasets,
including:

o Covariance tapering

Clai, x5) = C(i, ;)0 (|2; — a;))
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Scaling to large datasets

Several methods have been proposed to scale Gaussian processes to large datasets,
including:

e Covariance tapering

Clai, x5) = C(i, ;)0 (|2; — a;))

@ Low rank approximations, e.g. predictive processes/inducing points

C(xzi, xj) = C(mi,x*)C;}C(a:*,xj) + T25ij
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Scaling to large datasets

Several methods have been proposed to scale Gaussian processes to large datasets,
including:

e Covariance tapering

Clai, x5) = C(i, ;)0 (|2; — a;))

@ Low rank approximations, e.g. predictive processes/inducing points

C(xzi, xj) = C(mi,x*)C;}C(m*,xj) + T25ij

@ SPDE methods

@ Vecchia approximation
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Scaling to large datasets: Vecchia approximation
Based on the chain rule of probability

p(Z) = p(21) [ [ p(Zi| Z<i) = p(20) | | (Zi] Zogiy), i) € {< i}
=2 =2

This provides ¥~ = UU’, where U is a sparse upper triangular matrix such that

1/2
t . s .
< - C; Zc(l)CZ) ifi=7
Uii =\ =(S4Ci)Uii if j € c(i)

0 otherwise

o 02 = Cov(Z(z;), Z(x;))
) Cz = COV(ZZ', Zc(z))
° Ec(z) = COV(Z(xC(i))a Z(xc(l)))
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Scaling to large datasets: Vecchia approximation?

Low level implementation concerns

As sparse encoding (of covariance matrices) relies on non-contiguous memory accesses,
it scales very poorly on parallel hardware

One solution

KeOps ¢
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Application

Data generation

Simulate a stationary GP with a Matérn covariance function with v = 1.5 plus 0.05

variance noise, on 50000 uniform points (training) and on a 256 x 256 grid in [—5, 5]
and apply the transformation

@ o+ (z—o)||z —o|? with o the origin
@ 5tanh(z),
© (rcos(0 + %), rsin(f + %)), in polar coordinates

e —cgll®

Q z+ 22:0 <2 e 162 . Rﬁ/g(l'k — Ck)>
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Application

Data generation

Simulate a stationary GP with a Matérn covariance function with v = 1.5 plus 0.05
variance noise, on 50000 uniform points (training) and on a 256 x 256 grid in [—5, 5]
and apply the transformation

@ o+ (z—o)||z —o|? with o the origin
@ 5tanh(z),
© (rcos(0 + %), rsin(f + %)), in polar coordinates

e —cgll®

0 o+ Ty (20 ol - )

@ Learned model (Real NVP with 12 coupling layers, 2 hidden layers)
@ Stationary model

e Transformed stationary model (fixed transformation)
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Application

Results

Original Data
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Original Points in Learned Transformed Space
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Application

Results

Original Points in True Transformed Space Original Points in Learned Transformed Space
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Application

Results

Comparison of each GP learning results

Leaned non-Stationary GP.
(MSE vs True: 0.052030)
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Application
Results

Comparison of each GP learning results

Stationas

Leamed non-Stationary GP. ry
(MSE vs True: 0.053422)

(MSE vs True: 0.052030)
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Application

Results

MSE (10~2) computed on the test sets (256 x 256 grid)

1 2 3 4
Learned 52.2 | 52.1 | 52.0 | 52.1
Stationary | 53.2 | 53.5 | 53.4 | 525
Transformed | 52.8 | 52.5 | 51.6 | 52.0
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Conclusion

A new look at space deformation models
@ Non-stationary covariance functions and can be scaled to large datasets
@ Implementation in PyTorch and GPyTorch

@ Future work includes applying the framework to real-world datasets and exploring
other hybrid models of the kind
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Journées de Géostatistique 2025

75

Journées de Géostatistique 2025, 3-5 Septembre 2025, Fontainebleau, France

https://geostat25.sciencesconf.org/

19/19


https://geostat25.sciencesconf.org/

Application

Results

Original Data Original Points in Learned Transformed Space
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Application

Results
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Application

Results

Comparison of each GP learning results

Leamned non-Stationary GP.
(MSE vs True: 0.052228)
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Transformed Gp.
(MSE vs True: 0.05277)
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Application

Results

Comparison of each GP learning results

Stationary
(MSE vs True: 0.053721)

Leamed non-Stationary GP.
(MSE vs True: 0.052228)
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Application

Results

Original Data
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Application

Results

True Transformed X2
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Application

Results

Comparison of each GP learning results

Leamned non-Stationary GP.
(MSE vs True: 0.052120)
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Application

Results

Comparison of each GP learning results

Leamned non-Stationary GP.
(MSE vs True: 0.052120)
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Application

Results

Original Data Original Points in Learned Transformed Space
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Application

Results

True Transformed X2

Original Points in True Transformed Space
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Application
Results

Comparison of each GP learning results

Leaned non-Stationary GP.
(MSE vs True: 0.052074)

Stationary GP
(MSE vs True: 0.052522)
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Application
Results
Comparison of each GP learning results

Leamed non-Stationary GP.
(MSE vs True: 0.052074)
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