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Geostatistics in a nutshell

Main objectives

model a natural variable of interest, seen as a regionalized variable
z(x), x ∈ X ⊂ Rd over space(-time)

make predictions at unobserved locations

quantify uncertainty

Hypothesis

z is a realization of a random field Z

2/19



Geostatistics in a nutshell

Main objectives

model a natural variable of interest, seen as a regionalized variable
z(x), x ∈ X ⊂ Rd over space(-time)

make predictions at unobserved locations

quantify uncertainty

Hypothesis

z is a realization of a random field Z

2/19



Gaussian Processes Z(x), x ∈ X ⊂ Rd

Z = (Z(x1), . . . , Z(xn)) is a Gaussian vector
Z ∼ N(µ,Σθ), with

µ = E(Z)

(Σθ)i,j = Cov(Z(xi), Z(xj)) = Cθ(|xi − xj |)

Maximum-likelihood estimation

(µ̂, θ̂) = argmin(µ,θ) log(detΣθ) + (Z − µ)tΣ−1
θ (Z − µ)

Conditioning (prediction)

Z(xT )|Z(xT ) ∼ N(Z⋆
T ,Σ

⋆
T ), with T ∩D = ∅ such that

Z⋆(xT ) = µT +ΣTDΣ
−1
DD(Z(xD)− µD)

Σ⋆
T = ΣTT − ΣTDΣ

−1
DDΣDT
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Limitations

GPs generally assume a stationary covariance function,
which may not be appropriate for all spatial data :
Cov(Z(xi), Z(xj)) = Cθ(|xi − xj |)

Matérn covariance
C(xi, xj) = σ2 21−ν

Γ(ν)

(
∥xi−xj∥

ℓ

)ν
Kν

(
∥xi−xj∥

ℓ

)
GPs can be computationally expensive for large datasets
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Non stationary covariance constructions

Convolution models

Cov(Z(x), Z(y)) =

∫
T

∫
Rd

fx(u, t)fy(u, t)fT (t)dudt

C(x, y) = |Σx|1/4|Σy|1/4
∣∣∣∣Σx +Σy

2

∣∣∣∣−1/2 21−ν(x,y)Qxy(x− y)ν(x,y)√
Γ(ν(x))Γ(ν(y))

Kν(x,y)

(√
Qxy(x− y)

)
Varying parameters in SPDE

(κ2x −∇Hx∇)α/2Z(x) = W (x)

Space deformation

Z(x) = Z(f(x)) ⇒ Cov(Z(x), Z(y)) = C(f(x), f(y))
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Space Deformation
Relax the stationarity assumption

Cθ(xi,xj) = C(|fθ(xi)− fθ(xj)|)

Space deformation example: left geographical space, right deformed space

⇒ fθ is a transport map
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Formalization

The sampling design X = (x1, . . . , xn) is now considered random

We want to learn a transport map fθ (piecewise C1) such that the covariance
function of Z(x) is stationary and isotropic in the deformed space
Xθ = {fθ(x), x ∈ X}
In other words, we want to learn the joint distribution of Z and X

The likelihood writes

p(Z,X) = p(Z|X)p(X) = N(Z;µ,Σθ)px(X)

given some prior px over X (e.g. uniform)
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Normalizing Flows

Based on a recursive application of the change of variable formula:

pθ(u) = px(f
−1
θ (u))|detJf−1

θ
(u)|

fθ is a diffeomorphism (piecewise C1)

fθ is a NN trained by maximum likelihood estimation

Example: RealNVP
Stack affine coupling layers of the form

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s(x1:d)) + t(x1:d),

where s and t are dense feedforward NN, alternating between the variables
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Scaling to large datasets

Several methods have been proposed to scale Gaussian processes to large datasets,
including:

Covariance tapering

C(xi, xj) = C(xi, xj)C
CS(|xi − xj |)

Low rank approximations, e.g. predictive processes/inducing points

C(xi, xj) = C(xi, x
⋆)C−1

x⋆ C(x⋆, xj) + τ2δij

SPDE methods

Vecchia approximation
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Scaling to large datasets: Vecchia approximation
Based on the chain rule of probability

p(Z) = p(Z1)

n∏
i=2

p(Zi|Z<i) ≈ p(Z1)

n∏
i=2

p(Zi|Zc(i)), c(i) ⊂ {< i}

This provides Σ−1 = UU ′, where U is a sparse upper triangular matrix such that

Uj,i =


(
σ2
i − CiΣ

−1
c(i)C

t
i

)−1/2
if i = j

−(Σ−1
c(i)Ci)jUi,i if j ∈ c(i)

0 otherwise

σ2
i = Cov(Z(xi), Z(xi))

Ci = Cov(Zi, Zc(i))

Σc(i) = Cov(Z(xc(i)), Z(xc(i)))
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Scaling to large datasets: Vecchia approximation?

Low level implementation concerns

As sparse encoding (of covariance matrices) relies on non-contiguous memory accesses,
it scales very poorly on parallel hardware

One solution
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Application
Data generation

Simulate a stationary GP with a Matérn covariance function with ν = 1.5 plus 0.05
variance noise, on 50000 uniform points (training) and on a 256 x 256 grid in [−5, 5]2

and apply the transformation

1 o+ (x− o)∥x− o∥2, with o the origin

2 5 tanh(x),

3 (r cos(θ + πr
2 ), r sin(θ + πr

2 )), in polar coordinates

4 x+
∑2

k=0

(
2 · e−

∥xk−ck∥2

1.62 ·Rπ/2(xk − Ck)

)
Learned model (Real NVP with 12 coupling layers, 2 hidden layers)

Stationary model

Transformed stationary model (fixed transformation)
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Application
Results
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Application
Results

MSE (10−2) computed on the test sets (256 x 256 grid)

1 2 3 4

Learned 52.2 52.1 52.0 52.1
Stationary 53.2 53.5 53.4 52.5

Transformed 52.8 52.5 51.6 52.0
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Conclusion

A new look at space deformation models

Non-stationary covariance functions and can be scaled to large datasets

Implementation in PyTorch and GPyTorch

Future work includes applying the framework to real-world datasets and exploring
other hybrid models of the kind
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Journées de Géostatistique 2025

Journées de Géostatistique 2025, 3-5 Septembre 2025, Fontainebleau, France

https://geostat25.sciencesconf.org/
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