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Motivations



Overview - learn disentangled representations

• Common assumption in unsupervised representation learning:
low-dimensional latent variables generate observed data.

• Knowledge of true latent variables useful in many tasks:
classification, transfer learning, causal inference etc.

• Problem: models used usually unidentifiable (e.g. β-VAE), thus we
cannot recover true data generating features.

• Contributions: general identifiable framework for principled
disentanglement. Deep leargning architectures for structured VAE. Some
theoretical guarantees for VI for state spaces.

2/28



Applications - building energy management - Cohen, M. et al., 2021

⇁ (xk)k⩾0: observations to be predicted -
indoor temperatures, consumptions,
humidity levels in large buildings.

⇁ Latent states (sk)k⩾0: used to identify
random sollicitations (meteorological) and
usages.

⇁ Efficient training algorithms for overly
large deep learning models. Identification
of the latent states.
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Identifiability from dependent data



Deconvolution

The observation X is given by

X = Z + ε ,

Z is the signal and ε is the noise, Z and ε are independent random variables.

Goal

Learn the distribution of Z and of ε using independent observations X1, . . . , Xn

only.

Constraints

"No assumptions" on the distribution of the noise ε.

We do not assume that some samples with the same distribution as ε are
available.
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First basic question: identifiability

Is the distribution of Z uniquely determined by the distribution of X ? That is:

Can Z + ε have the same distribution of Z′ + ε′ with Z′ having a different
distribution than Z ?

What assumptions to get identifiability (up to translation) ?

Good news: no assumption on the noise and weak structure assumptions on
the signal allow identifiability

• Multidimensional observations: X, Z, ε are in Rd , d ≥ 2
• No distributional assumption on the noise, except that it has independent

components
• The distribution of the signal has not too heavy tails
• Some dependency assumption on the components of the signal
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Identifiability theorem

• With d1 ⩾ 1, d2 ⩾ 1 (d1 + d2 = d):

X =
(

X (1)

X (2)

)
=
(

X (1)

X (2)

)
+
(

ε(1)

ε(2)

)
= Z + ε .

• ε(1) is independent of ε(2).

PR,Q is the distribution of X when Z has distribution R and for i ∈ {1, 2}, ε(i)

has distribution Q(i), with Q = Q(1) ⊗ Q(2).

• "Dependency assumption" on X (1) and X (2) (HD).

• Tail assumption on R (H(ρ)).

Theorem
Assume that R and R̃ are probability distributions on Rd which satisfy
assumption H(ρ) for some ρ < 2 and which satisfy HD.
Then, PR,Q = P

R̃,Q̃
implies that R = R̃ and Q = Q̃ up to translation.
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Application to nonlinear ICA



Structured Nonlinear ICA & Examples

Observations: (x t)t∈T = ((x (1)
t , . . . , x (M)

t ))t⩾0.

Independence of latent components:

p(st1 , . . . , stm ) =
N∏

i=1

p(s(i)
t1 , . . . , s(i)

tm ) .

Nonlinear observation model:

x t = f(st) + εt ,

where (εt)t⩾1 are i.i.d with unknown distribution; f : RN → RM is injective.

(Hyvarinen, A. and Pajunen, P., 1999, Neural Networks):
"noise free" nonlinear ICA not identifiable i.e. infinitely many decompositions
of x = f (s) into independent components.

(Hyvarinen, A., Sasaki, H., and Turner R., 2019, AISTATS):
independent components dependent on some additional auxiliary variable u,
while being conditionally mutually independent.
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Structured Nonlinear ICA & Examples

Previous models can be reformulated to fit within our framework.
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Structured Nonlinear ICA & Examples

As well as flexible new models.
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Step 1: identification of noise free distribution

⇁ Identify noise-free distribution of z t = f (st) from x t = z t + εt .

⇁ Assumptions

• (A1) Tails of z t "not much" heavier than Gaussian.
For some ρ < 3, for all λ ∈ RM , E[exp(λ⊤z t)] ⩽ A exp(B∥λ∥ρ).

• (A2) Non-degeneracy assumption.
The random variables (z t)t⩾1 are dependent.

• (A3) z t has no Gaussian component.

If (A1), (A2) and (A3) hold for some (t1, t2) ∈ T2. Then, for all m ⩾ 2, the law
of (z t1 , . . . , z tm ) and the law of εt1 can be recovered up to translation from
the law of (x t1 , . . . , x tm ).
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Step 2: identification of the mixing function

⇁ Noise ε can have arbitrary and unknown distribution! Similar as (Gassiat É.,
Le Corff, S. and Lehéricy, L., 2020, JMLR) and (Gassiat É., Le Corff, S. and Lehéricy,
L., 2022, AoS).

⇁ Identify f from the distribution of (z t1 , . . . , z tm ).

⇁ Under additional technical assumptions, f can be recovered up to
permutation and component-wise transformations from the law of
(z t1 , . . . , z tm ).
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Practical implementation - ∆-SNICA model

Labels: (ut)t⩾1 discrete Markov chain in {1, . . . , K}.

Regime switching: For all 1 ⩽ i ⩽ N, t ⩾ 2, y i
t = B i

ui
t
y i

t−1 + bui
t

+ εi
ui

t
.

Target signals: The independent components are s i
t = y i

t,1.

Observation model: The observations are x t = f θ(st) + ηt , with (ηt)t⩾1 i.i.d.
and Gaussian.

Parameters: Law of the discrete chain, parameters of the linear and Gaussian
state space model, parameters of fθ (typically a Feed Forward Neural Network).

The loglikelihood cannot be computed, in this work we use a variational
formulation.
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Variational estimation

In practice the model is often estimated by maximizing the ELBO:

L(θ, φ, x1:t) = Eqφ,0:t

[
log pθ(z1:t , x1:t)

qφ,0:t(z1:t |x1:t)

]
where qφ,0:t(z1:t |x1:t) is the variational distribution.

Traditional assumption on the variational family

qφ,0:t(z1:t |x1:t) =
t∏

s=1

qφ,s(zs |x1:t) .

⇁ No theoretical results and does not fit classical posterior distributions (for
instance in HMMs).

New framework: backward decomposition

qφ,0:t(z1:t |x1:t) = qφ,t(z t |x1:t)
t∏

s=2

qφ,s−1|s(zs−1|zs , x1:t) .

⇁ Some theoretical guarantees and well designed for online learning.
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A few theoretical results for
reconstruction



Setting

State space models
ϕθ

0:t︸︷︷︸
Z0:t given X0:t

h = Eθ [h(Z0:t)|X0:t ]

• Z0:t is a Markov chain with transition density mθ.
• Conditionally on Z0:t , the observations are independent with emission

densities gθ(Zt , ·).

Additive state functionals

h0:t : z0:t 7→
t∑

s=1

h̃s(zs−1, zs)

⇝ ϕθ
0:th0:t crucial in both inference and parameter learning.
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Goal - bias control

Theoretically validate backward variational smoothing as a valid approximation.

• Variational inference is not consistent.
• Bias depends on implementation / optimization.

⇝ Ensure that the bias is controlled w.r.t time.

Quantities of interest: ϕθ
0:th0:t = Eθ [h0:t(Z0:t)|X0:t ]

h0:t additive state functional.

|qφ,0:th0:t − ϕθ
0:th0:t | ≤?

⇝ Marginal smoothing as a byproduct.
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An insightful result

Assumptions

• σ− ≤ ℓθ
s (xs−1, xs) ≤ σ+ and σ− ≤ qλ

s−1|s(xs−1, xs) ≤ σ+

•
∥∥qφ,t − ϕθ

t
∥∥

tv
≤ ε.

•
∥∥qφ,s−1|s(xs , ·) − bθ

s−1|s(xs , ·)
∥∥

tv
≤ ε for all s < t, xs ∈ X.

Additive bound ∣∣qφ,0:th0:t − ϕθ
0:th0:t

∣∣ ≤ ctε

Perspectives

Quantitative bounds without strong mixing ?
Does minimizing the ELBO ensure that the true and variational kernels are
close ?
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To obtain excess risk bound

Assumptions

• σ− ≤ ℓθ
s (xs−1, xs) ≤ σ+ and σ− ≤ qλ

s−1|s(xs−1, xs) ≤ σ+

• KL(qφ,t , ϕθ
t ) ≤ ε.

• KL(qφ,s−1|s(xs , ·), bθ
s−1|s(xs , ·)) ≤ ε for all s < t.

• Additional moment and Lipschitz assumptions.

There exist constants c0, c1, c2, D such that with probability at least
1 − c0exp(−c1{d∗ log n}1∧α∗ ), for any γ > 0,

KL
(

Pθ∗

∥∥∥P
θ̂n,T

)
≤ (1 + γ)(T + 1)ϵ + c2(1 + γ−1)Dd∗T 3

n log(d∗n)(log n)1/α∗ .
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To obtain excess risk bound

There exist constants c0, c1, c2, D such that with probability at least
1 − c0exp(−c1{d∗ log n}1∧α∗ ), for any γ > 0,

KL
(

Pθ∗

∥∥∥P
θ̂n,T

)
≤ (1 + γ)(T + 1)ϵ + c2(1 + γ−1)Dd∗T 3

n log(d∗n)(log n)1/α∗ .

Perspectives

Improving the dependency with respect to T ?
Specific results (constants) for specific deep architectures ?
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To obtain excess risk bound

Write

P̂n(dx0:t) =
∫ (

1
n

n∑
i=1

qφ(z0:t |x i
0:t)

)
pθ(x0:t |z0:t)dz0:t

There exist constants c0, c1, c2, D such that with probability at least
1 − c0exp(−c1{d∗ log n}1∧α∗ ), for any γ > 0,

KL
(

Pθ∗

∥∥∥P̂n

)
≤ (1+γ)(T +1)ϵ+c2(1+γ−1)Dd∗T 3

n log(d∗n)(log n)1/α∗ .

Perspectives

Improving the dependency with respect to T ?
Specific results (constants) for specific deep architectures ?
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Deep learning-based implementations



Practical implementation - ∆-SNICA model

Labels: (ut)t⩾1 discrete Markov chain in {1, . . . , K}.

Regime switching: For all 1 ⩽ i ⩽ N, t ⩾ 2, y i
t = B i

ui
t
y i

t−1 + bui
t

+ εi
ui

t
.

Target signals: The independent components are s i
t = y i

t,1.

Observation model: The observations are x t = f θ(st) + ηt , with (ηt)t⩾1 i.i.d.
and Gaussian.

Parameters: Law of the discrete chain, parameters of the linear and Gaussian
state space model, parameters of fθ (typically a Feed Forward Neural Network).

The loglikelihood cannot be computed, in this work we use a variational
formulation.
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Practical implementation - variational estimation

The model is estimated by maximizing the ELBO:

L(θ, φ, )x1:t = Eqφ

[
log pθ(x1:t , u1:t , y1:t)

qφ(u1:t , y1:t |x1:t)

]
where qφ(u1:t , y1:t |x1:t) is the variational distribution.

Assumption (I) on the variational family:

qφ(u1:t , y1:t |x1:t) = qφ(u1:t |x1:t)qφ(y1:t |x1:t) .

Using the assumption on the model all terms of the ELBO can be computed
except Eqφ [

∑t
s=1 log pθ(x t |st)] which is approximated using other neural nets.

⇁ Allows very fast variational learning but no theoretical guarantees for such
approaches.
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Practical implementation - variational estimation

The model is estimated by maximizing the ELBO:

L(θ, φ, x1:t) = Eqφ

[
log pθ(x1:t , u1:t , y1:t)

qφ(u1:t , y1:t |x1:t)

]
where qφ(u1:t , y1:t |x1:t) is the variational distribution.

Assumption (II) on the variational family:

qφ(u1:t , y1:t |x1:t) = qφ(ut , y t |x
1:N
1:t )

t−1∏
s=1

qφ(us , y s |us+1, y s+1, x1:s) .

⇁ Allows online learning and first theoretical guarantees for such approaches.
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Experiments (I.1)

• 100k-long time series sampled from the model, K = 2.

• Observed data of dimension M ∈ {12, 24} - number of independent
components, N ∈ {3, 6}.

• We considered four levels of mixing of increasing complexity by randomly
initialized MLPs of the following number of layers: 1 (linear ICA), 2, 3,
and 5.

• Simulated data: Measure identifiability – correlation between estimated
and true independent components.
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Experiments (I.2)
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Experiments (II.1)

• Use of backward variational law to illustrate theoretical results - errors
grow linearly with the number of obwervations for additive functionals.

• True observation model given by a Gaussian law with mean hθ(st) and
variance R.

• Hidden signals given by a linear and Gaussian state-space.

• Variational backward kernel given by a Gaussian law with DNN to encode
means and variance.
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Experiments (II.2)
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(Left) Model trained and stop after different number of epochs.

(Right) State estimation error for an additive functional for each variational
model.
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Experiments (III)

For all k, conditionally on zk−1, zk is Gaussian with mean
zk−1 + δ[γW tanh(zk−1) − zk−1]/τ and variance Q and the emission density is
a Student-t distribution with mean zk , ν degrees of freedom and scale R.
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(Left) Smoothing errors at each time step (10 independent runs).

(Right) Marginal smoothing errors at each time step (10 independent runs).
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Challenges

• Design new methodologies for more general variational families (non
Gaussian noise, etc.).

• Large scale online learning.

• Theoretical guarantees with weaker assumptions (forgetting, consistency).

• Theoretical guarantees for online learning.
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