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■ GEOSTATISTICAL MODELING

Geostatistical paradigm: over the spatial domain D

Gaussian Random Field

Z : {Z(p) : p ∈ D}
High correlation

Realization−→

Observed variable

z : {z(p) : p ∈ D}
High “similarity”

Allows to model data which are not independent, identically distributed

Covariance function CZ :

CZ : D×D → R

(p1,p2) 7→ CZ(p1,p2) = Cov(Z(p1), Z(p2))

→ used to model the spatial structure observed on the variable/data
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■ CHALLENGES IN PRACTICE

Non-euclidean domains

Extensive literature for the sphere: Marinucci and Peccati (2011);

Lang et al. (2015); Lantuéjoul et al. (2019); Emery and Porcu (2019)

Non-stationarity

Examples of proposed methods: Karhunen-Loève expansions
(Lindgren, 2012), Space deformation models (Sampson and Guttorp,

1992), Convolution models (Higdon et al., 1999)

Big “N” problem

Need to restrict the choice of models to work with sparse
matrices: Compactly-supported or tapered covariance functions
(Gneiting, 2002; Furrer et al., 2006), Markovian models (Rue and Held,

2005)

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion 4



■ THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over Rd, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density

Γ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise
P (−∆)1/2Z := F−1

[
ξ 7→ P (∥ξ∥2)1/2 × F [Z](ξ)

]
where P is a polynomial, strictly positive over R+
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(Whittle, 1954; Rozanov, 1977):

Spectral density

Γ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise
P (−∆)1/2Z := F−1

[
ξ 7→ P (∥ξ∥2)1/2 × F [Z](ξ)

]
where P is a polynomial, strictly positive over R+

→ In particular, if P (x) = (κ2 + x)α, i.e. if we consider the SPDE

(κ2 −∆)α/2Z = W

then Z has a Matérn covariance function

Cov
(
Z(x+ h),Z(x)

)
= C(∥h∥) = σ2

2ν−1Γ(ν)

(
κ∥h∥

)ν
Kν

(
κ∥h∥

)
, ν = α− d/2
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■ MATÉRN RANDOM FIELDS

Simulations of Gaussian random fields with a Matérn covariance
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■ A FIRST SOLUTION: THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over Rd, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density

Γ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise
P (−∆)1/2Z := F−1

[
ξ 7→ P (∥ξ∥2)1/2 × F [Z](ξ)

]
where P is a polynomial, strictly positive over R+

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem Solution proposed
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SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem Solution proposed

Non-euclidean domains,
Non-stationarity

Define the SPDE on manifolds or use varying
parameters
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■ A FIRST SOLUTION: THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over Rd, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density

Γ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise
P (−∆)1/2Z := F−1

[
ξ 7→ P (∥ξ∥2)1/2 × F [Z](ξ)

]
where P is a polynomial, strictly positive over R+

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem Solution proposed

Big “N” problem Use the finite element method to solve the SPDE
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■ A CLASS OF RANDOM FIELDS

Let L be a second-order self-adjoint elliptic operator with smooth coefficients, eg.

L = −∆, L = κ2(·)− div(H(·)∇)

Spectral theorem on compact Riemannian manifolds M = (D, g):
− L has discrete eigenvalues {λk : k ∈ N} with smooth eigenfunctions {ek : k ∈ N}
− The eigenfunctions {ek}k∈N can be taken to form an orthonormal basis of L2(M)

Consider the L2(M)-valued random variables defined by

Z =
∑
k∈N

γ(λk)Wk ek where {Wk}k∈N ∼ IIDN(0, 1)

and γ : R+ → R such that |γ(λ)| = Oλ→∞(|λ|−β) with β > d/4 (eg. γ(λ) = (κ2 + x)−α/2)

Covariance properties (Pereira, 2019): when (M, g) = ([0, 1]d, g) and L = −∆

Cov (Z(p) ,Z(p+ dp)) ≈ C0

(√
gp(dp, dp)

)
where C0 = F−1[γ2]
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■ DISCRETIZING THE FIELD

L2(M)
Self-adjoint differential operator L

Spectral theorem: {(λk, ek) : k ∈ N}
eigenvalues/functions of L

L2(M)-valued random variables

Z =
∑
k∈N

γ(λk)Wk︸ ︷︷ ︸
independent

Gaussian weights

ek

✓ General approach

✓ Local definition of covariance:

Cov (Z(p) ,Z(p+ dp)) ≈ C0

(√
gp(dp, dp)

)
where C0 = F−1[γ2]

FEM basis VNh
= span {ψ1, . . . , ψNh

}
Lh = Galerkin approximation of L

”Spectral theorem”:
{
(λ

(h)
k , e

(h)
k ) : k ∈ [[1, Nh]]

}
eigenvalues/functions of Lh

VNh
-valued random variables

Zh =

Nh∑
k=1

γ(λ
(h)
k )W

(h)
k︸ ︷︷ ︸

independent
Gaussian weights

e
(h)
k =

Nh∑
i=1

Ziψi

✓ Explicit computation (Lang and Pereira, 2023):

Z = C−1/2γ(S)W , W ∼ N(0, I)

where S = C−1/2RC−1/2,
C = [⟨ψi, ψj⟩] ,R = [⟨Lψi, ψj⟩]

→ sparse matrices

FEM convergence
result
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√

gp(u,u)
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(
θ(u,v)

)
=
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■ EXAMPLES OF SAMPLED RANDOM FIELDS

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion 10



■ OUTLINE

I. Introduction and context

II. Spatio-temporal extension

III. Diffusion SPDE with fractional noise

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion 11



■ BROWNIAN MOTION AND WHITE NOISE

A Wiener process / Brownian motion (βt)t∈[0,T ] is a (real-valued) stochastic process such that
− β0 = 0 and (βt)t∈[0,T ] has (almost-surely) continuous trajectories
− For any 0 ≤ t1 < · · · < tn ≤ T ,

βt1 , βt2 − βt1 , . . . , βtn−1
− βtn

are independent and are Gaussian-distributed:

βti+1
− βti ∼ N(0, (ti+1 − ti))
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■ BROWNIAN MOTION AND WHITE NOISE

A Wiener process / Brownian motion (βt)t∈[0,T ] is a (real-valued) stochastic process such that

− β0 = 0 and (βt)t∈[0,T ] has (almost-surely) continuous trajectories
− For any 0 ≤ t1 < · · · < tn ≤ T ,

βt1 , βt2 − βt1 , . . . , βtn−1
− βtn

are independent and are Gaussian-distributed:

βti+1
− βti ∼ N(0, (ti+1 − ti))

If W is a white noise, then (βt)t∈[0,T ] defined as

βt = W([0, T ]) =

∫
1[0,t]dW =

∫ t

0

W(dt)

is a Brownian motion.
→ White noise can be seen as the (weak) derivative of Brownian motion

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion 12



■ SPACE-TIME NOISE?

Current SPDE:
(κ2 −∆)α/2Z = W

→ Space-time equivalent of white noise W ? → Q-Wiener process

A Q-Wiener process (BQ
t )t∈[0,T ] is a L

2(D)-valued stochastic process such that

− B
Q
0 = 0 and (BQ

t )t∈[0,T ] has (almost-surely) continuous trajectories

− For any 0 ≤ t1 < · · · < tn ≤ T ,

B
Q
t1 ,B

Q
t2 −B

Q
t1 , . . . ,B

Q
tn−1

−B
Q
tn

are independent and are Gaussian-distributed: for any ϕ ∈ L2(D),

⟨BQ
ti+1

−B
Q
ti , ϕ⟩ ∼ N(0, (ti+1 − ti)⟨Qϕ, ϕ⟩)

for some bounded, non-negative, symmetric and linear operator Q
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■ SPACE-TIME NOISE?

Current SPDE:
(κ2 −∆)α/2Z = W

→ Space-time equivalent of white noise W ? → Q-Wiener process

A Q-Wiener process (BQ
t )t∈[0,T ] is a L

2(D)-valued stochastic process such that

B
Q
t =

∑
i∈N

√
λQk β

(k)
t eQk , t ∈ [0, T ]

where (β
(k)
t )t∈[0,T ] are independent Brownian motions, {eQk }k∈N is an orthonormal basis of

L2(D) consisting of eigenvectors of Q, with eigenvalues {λQk }k∈N :

QeQk = λQk e
Q
k

→ “Karhunen-Loeve” decomposition
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■ SPATIO-TEMPORAL SPDE

Space-time random field (Z(t, x))t∈[0,T ],x∈D seen as a L2(D)-valued stochastic
process (Zt)t∈[0,T ]

Consider the following SPDE / infinite dimensional SDE

dZt + (κ2 −∆)α/2Ztdt = dBQ
t

White-noise formulation
∂Z

∂t
+ (κ2 −∆)α/2Z = WT ⊗W

Q
S

where WT ⊗W
Q
S is a space-time “white noise”, linked to B

Q
t through

∀t ∈ [0, T ], ⟨Bt, ϕS⟩ − ⟨B0, ϕS⟩ = ⟨WT ⊗W
Q
S ,1[0,t] ⊗ϕS⟩ =

∫ t

0

∫
D

ϕS(x)WT ⊗W
Q
S (dt, dx)

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion 14



■ SPATIO-TEMPORAL SPDE

Space-time random field (Z(t, x))t∈[0,T ],x∈D seen as a L2(D)-valued stochastic
process (Zt)t∈[0,T ]

Consider the following SPDE / infinite dimensional SDE

dZt + (κ2 −∆)α/2Ztdt = dBQ
t

White-noise formulation
∂Z

∂t
+ (κ2 −∆)α/2Z = WT ⊗W

Q
S

where WT ⊗W
Q
S is a space-time “white noise”, linked to B

Q
t through

∀t ∈ [0, T ], ⟨Bt, ϕS⟩ − ⟨B0, ϕS⟩ = ⟨WT ⊗W
Q
S ,1[0,t] ⊗ϕS⟩ =

∫ t

0

∫
D

ϕS(x)WT ⊗W
Q
S (dt, dx)

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion 14



■ DIFFUSION SPDE

Let {ek}k∈N be an o.n.b. of L2(D) composed of eigenfunctions of −∆ with eigenvalalues {λk}k∈N

Let Q = (κ2 −∆)−αn and κ > 0, αd ≥ 0, αn ≥ 0, and consider the diffusion SPDE{
dZt + (κ2 −∆)αd Zt dt = dBQ

t

Z0 = z0 ∈ L2(D)
with B

Q
t =

∑
k∈N

(κ2 + λk)
−αn/2β

(k)
t eQk , t ∈ [0, T ]

where (β
(k)
t )t∈[0,T ] are independent Brownian motions

→ Existence and uniqueness of (weak and mild) solution if αd + αn > d/2
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Let {ek}k∈N be an o.n.b. of L2(D) composed of eigenfunctions of −∆ with eigenvalalues {λk}k∈N

Consider the diffusion SPDE{
dZt + (κ2 −∆)αd Zt dt = dBQ

t

Z0 = z0 ∈ L2(D)
with B

Q
t =

∑
k∈N

(κ2 + λk)
−αn/2β

(k)
t eQk , t ∈ [0, T ]

Spectral decomposition of the SPDE solution:

Zt =
∑
k∈N

Z
(k)
t ek

where for each k, Z(k) satisfies a SDE{
dZ

(k)
t + (κ2 + λk)

αd Z
(k)
t dt = (κ2 + λk)

−αn/2dβ
(k)
t , t ∈ (0, T ]

Z
(k)
0 = ⟨z0, ek⟩

→ Independent Ornstein-Uhlenbeck process

dZ
(k)
t = −θk Z(k)

t dt+ τk dβ
(k)
t , t ∈ (0, T ]
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■ DIFFUSION SPDE

Spectral decomposition of the SPDE solution:

Zt =
∑
k∈N

Z
(k)
t ek, t ∈ (0, T ]

where for each k, θk = (κ2 + λk)
αd , τk = (κ2 + λk)

−αn/2 and

dZ
(k)
t = −θk Z(k)

t dt+ τk dβ
(k)
t

Explicit dynamic for the coeffcients Z
(k)
t → Gaussian + Markov process

(Z
(k)
t+δt|Z

(k)
t = z) ∼ N

(
e−θkδtz,

τ2k
2θk

(1− e−2θkδt)
)

(δt > 0)

Covariance of the (unconditionned) process

Cov(Z
(k)
t+δt, Z

(k)
t ) =

τ2k
2θk

e−θkδt (δt > 0)
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■ SOLVING THE DIFFUSION SPDE

Method 1 : Spectral Approach

1. Pick a truncation order N

2. Simulate the OH processes Z(1), . . . , Z(N) for t ∈ (0, T ]

3. Return Zt =
∑N

k=1 Z
(k)
t ek, t ∈ (0, T ]

→ Need to know the eigendecomposition of −∆....
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■ SOLVING THE DIFFUSION SPDE

Method 2 : Euler+FEM (Clarotto et al., 2022)

1. Time-discretization using (Implict) Euler

Zt+δt − Zt + (κ2 −∆)αd Zt+δt δt =

∫ t+δt

t

dBQ
s =

√
δtWQ

S

2. Space disctretization using FEM (Galerkin) to deduce that, with Ẑt =

Nh∑
i=1

[z(t)]iψi,

(
I + δt(κ2I + R̃)αd

)
C1/2z(t+δt) = C1/2z(t) +

√
δtC1/2(κ2I + R̃)−αn/2w

where w ∼ N(0, I), and C (diagonal mass lumped matrix), R (stiffness matrix) and

R̃ = C−1/2RC−1/2 are sparse matrices

→ Explicit expression for precision matrix of solution!

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion 19
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■ SOLVING THE DIFFUSION SPDE

Method 3 : Discrete spectral approach

1. Formulate the spectral solution in the FEM space: Ẑt =

Nh∑
k=1

Ẑ
(k)
t Ek where

{
dẐ

(k)
t + (κ2 + Λk)

αd Ẑ
(k)
t dt = (κ2 + Λk)

−αn/2dβ
(k)
t , t ∈ (0, T ]

Ẑ
(k)
0 = ⟨z0, Ek⟩

2. Use the cond. dist. of OU processes + definition of −∆h to deduce that for any δt > 0
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1− e−2(κ2+λ)αdδt

3. Use Galerkin-Chebyshev to compute the solution

C1/2z(t+δt) = mδt(R̃)C1/2z(t) + σδt(R̃)w
→ Explicit expression for precision matrix of solution!
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■ COVARIANCE OF THE SOLUTION

Recall that θk = (κ2 + λk)
αd , τk = (κ2 + λk)

−αn/2

For ϕ, φ ∈ L2(D), and t, u ∈ R

Cov
(
⟨Zt, ϕ⟩, ⟨Zt+u, φ⟩

)
=

∑
k∈N

Cov
(
Z

(k)
t , Z

(k)
t+u

)
⟨ek, ϕ⟩⟨ek, φ⟩ =

∑
k∈N

τ2k
2θk

e−θku⟨ek, ϕ⟩⟨ek, φ⟩

Spatial trace : u = 0

Cov
(
⟨Zt, ϕ⟩, ⟨Zt, φ⟩

)
=

∑
k∈N

τ2k
2θk

⟨ek, ϕ⟩⟨ek, φ⟩ =
∑
k∈N

1

2
(κ2 + λk)

−(αd+αn)⟨ek, ϕ⟩⟨ek, φ⟩

→ Same as the solution of the SPDE (κ2 −∆)(αd+αn)/2Y =
√
2 W

Temporal trace : ϕ = φ

Cor
(
⟨Zt, ϕ⟩, ⟨Zt+u, ϕ⟩

)
=

∑
k∈N

ck∑
l∈N cl

e−θku, ck = (κ2 + λk)
−(αd+αn)⟨ek, ϕ⟩2

→ Mixture of exponential correlation functions!
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■ EXAMPLES OF SAMPLES

Time regularity: Almost-nowhere differentiable, but paths are Hölder-continuous with order
1/2− ε for any ε ∈ (0, 1/2), i.e.

E[|⟨Zt, ϕ⟩ − ⟨Zt+u, ϕ⟩|] ≤ C|u|1/2−ε (1)

→ Regularity inherited from the Brownian motion! Can we do better?
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■ OUTLINE

I. Introduction and context

II. Spatio-temporal extension

III. Diffusion SPDE with fractional noise
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■ FRACTIONAL BROWNIAN MOTION

A fractional Brownian motion (βH
t )t∈[0,T ] with Hurst index H ∈ (0, 1)

is a Gaussian process such that

− (βH
t )t∈[0,T ] has (almost-surely) continuous trajectories

− Its covariance function is given by

Cov(βH
t , β

H
s ) =

1

2
(|t|2H + |s|2H − |t− s|2H)

H=0.25

H=0.5

H=0.75
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t )t∈[0,T ] has (almost-surely) continuous trajectories

− Its covariance function is given by

Cov(βH
t , β

H
s ) =

1

2
(|t|2H + |s|2H − |t− s|2H)

Some properties

− Particular case : H = 1/2 → (standard) Brownian motion

− Associated variogram: Var(βH
t − βH

s ) ∝ |t− s|2H

− Paths Hölder-continuous of order H − ε for any ε ∈ (0, H)

− Stationary increments: βH
t − βH

s ∼ βH
t−s

− Increments are positively correlated if H > 1/2 (→ tends to
continue the trends) and negatively correlated if H < 1/2
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H=0.5

H=0.75

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion 24



■ FRACTIONAL BROWNIAN MOTION

A fractional Brownian motion (βH
t )t∈[0,T ] with Hurst index H ∈ (0, 1)

is a Gaussian process such that

− (βH
t )t∈[0,T ] has (almost-surely) continuous trajectories

− Its covariance function is given by

Cov(βH
t , β

H
s ) =

1

2
(|t|2H + |s|2H − |t− s|2H)

Note: if H ̸= 1/2, the increments are not independent → Non
Markovian process (with long-range dependence for H > 1/2)

Remark: Fractional Brownian motion can also be seen as an
integrated (standard) Brownian motion

(Fractional) Itô calculus and (fractional) Q-Wiener processes are
well-defined for fractional Brownian motions
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H=0.5

H=0.75
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■ FRACTIONAL DIFFUSION SPDE

Let {ek}k∈N be an o.n.b. of L2(D) composed of eigenfunctions of −∆ with eigenvalalues {λk}k∈N

Consider the diffusion SPDE{
dZt + (κ2 −∆)αd Zt dt = dBH,Q

t

Z0 = z0 ∈ L2(D)
with B

H,Q
t =

∑
k∈N

(κ2 + λk)
−αn/2β

(H,k)
t eQk , t ∈ [0, T ]

where (β
(H,k)
t )t∈[0,T ] are independent fractional Brownian motions

Spectral decomposition of the SPDE solution:

Zt =
∑
k∈N

Z
(k)
t ek with

{
dZ

(k)
t + (κ2 + λk)

αd Z
(k)
t dt = (κ2 + λk)

−αn/2dβ
(H,k)
t , t ∈ (0, T ]

Z
(k)
0 = ⟨z0, ek⟩

→ Independent Fractional Ornstein-Uhlenbeck process

dZ
(k)
t = −θk Z(k)

t dt+ τk dβ
(H,k)
t , t ∈ (0, T ]
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■ COVARIANCE OF THE STATIONARY SOLUTION

Recall that θk = (κ2 + λk)
αd , τk = (κ2 + λk)

−αn/2

For ϕ, φ ∈ L2(D), and t, u ∈ R

Cov
(
⟨Zt, ϕ⟩, ⟨Zt+u, φ⟩

)
=

∑
k∈N

Ck(u)⟨ek, ϕ⟩⟨ek, φ⟩

where Ck(u) = Cov
(
Z

(k)
t , Z

(k)
t+u

)
=

Γ(2H + 1) sin(πH)

π

τ2k
2θ2Hk

∫ ∞

−∞
eix(u/θk)

|x|1−2H

1 + x2
dx

Spatial trace : u = 0

Cov
(
⟨Zt, ϕ⟩, ⟨Zt, φ⟩

)
∝

∑
k∈N

τ2k
2θ2Hk

⟨ek, ϕ⟩⟨ek, φ⟩

→ Same as the solution of the SPDE (κ2 −∆)(2Hαd+αn)/2Y =
√
2 W

Temporal trace : ϕ = φ

Cor
(
⟨Zt, ϕ⟩, ⟨Zt+u, ϕ⟩

)
=

∑
k∈N

ck∑
l∈N cl

∫ ∞

−∞
eix(u/θk)

|x|1−2H

1 + x2
dx, ck =

τ2k
2θ2Hk

⟨ek, ϕ⟩2
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■ COVARIANCE OF THE STATIONARY SOLUTION

Recall that θk = (κ2 + λk)
αd , τk = (κ2 + λk)

−αn/2

Temporal trace : ϕ = φ

Cor
(
⟨Zt, ϕ⟩, ⟨Zt+u, ϕ⟩

)
=

∑
k∈N

ck∑
l∈N cl

∫ ∞

−∞
eix(u/θk)

|x|1−2H

1 + x2
dx, ck =

τ2k
2θ2Hk

⟨ek, ϕ⟩2

Covariance function ρ(u) =
∫∞
−∞ eix(u/θk)

|x|1−2H

1+x2 dx
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■ COMPUTING THE SOLUTION

Remark: The noise increments are now time-correlated

Method : Discrete spectral + Implicit Euler time-stepping

1. Formulate the spectral solution in the FEM space: Ẑt =

Nh∑
k=1

Ẑ
(k)
t Ek where

Ẑt =

Nh∑
k=1

Ẑ
(k)
t Ek where

{
dẐ

(k)
t + (κ2 + Λk)

αd Ẑ
(k)
t dt = (κ2 + Λk)

−αn/2dβ
(k,H)
t

Ẑ
(k)
0 = ⟨z0, Ek⟩

2. Generate independent fBm trajectories β
(h)
t = (β

(1,H)
t , . . . , β

(Nh,H)
t ) over [0, T ]

3. Use Implicit time step on SDEs + Change of basis to deduce that, with Ẑt =

Nh∑
i=1

[z(t)]iψi,

where
(
I+δt(κ2I+R̃)αd

)
C1/2z(t+δt) = C1/2z(t)+

√
δtC1/2(κ2I+R̃)−αn/2

(
β
(h)
t+δt−β

(h)
t

)
→ Explicit expression for precision matrix of solution with Kronecker products!
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■ EXAMPLES OF SAMPLES
H=0.5

H=0.75
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■ EXAMPLES OF SAMPLES
H=0.5

H=0.9
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■ OUTLOOKS

Stochastic analysis of numerical scheme (ongoing)

Link to fractional operators

Going further: What if we replaced the fBm with even smoother processes?

Matern process instead of fBm
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