Higher time regularity of SPDE-based Gaussian

processes using fractional brownian motion

M. PEREIRA

Geosciences and Geoengineering Department, Mines Paris - PSL University
mike.pereira@minesparis.psl.eu

Workshop Geolearning @ Frejus
March 31st, 2025

g PSL%* ANDRA BNP PARIBAS
A (=-&) GEOLEARNING &
INRAD  fonsion, s SCOR




m OUTLINE

l. Introduction and context

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion

&

GEOLEARNING



B GEOSTATISTICAL MODELING

Geostatistical paradigm: over the spatial domain D

Gaussian Random Field Observed variable
Z:{Z(p):p e D} Realization z:{z2(p): p € D}
High correlation High “similarity”

= Allows to model data which are not independent, identically distributed
= Covariance function C:
Cz; : DxD — R
(P1,p2) — Cz(p1,p2) = Cov(Z(p1), Z(p2))

— used to model the spatial structure observed on the variable/data

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion
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o3
m CHALLENGES IN PRACTICE Gzogmc

Non-euclidean domains

= Extensive literature for the sphere: Marinucci and Peccati (2011);
Lang et al. (2015); Lantuéjoul et al. (2019); Emery and Porcu (2019)

Non-stationarity
® Examples of proposed methods: Karhunen-Loéve expansions
(Lindgren, 2012), Space deformation models (Sampson and Guttorp,
1992), Convolution models (Higdon et al., 1999)

Big “N” problem
= Need to restrict the choice of models to work with sparse
matrices: Compactly-supported or tapered covariance functions
(Gneiting, 2002; Furrer et al., 2006), Markovian models (Rue and Held,
2005)

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion | 4



o
m THE SPDE APPROACH ezoga’f;?ms

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 -
F:¢eRfs ——— P(-A)Y22, =W
P([I€]1%)

= W: Gaussian white noise
= P(=A)PZ = F 71 [ P([E]D)Y? x F[2)(8)]
where P is a polynomial, strictly positive over R,

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion [ 5
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Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 -
F:¢eRfs ——— P(-A)Y22, =W
P([I€]1%)

= W: Gaussian white noise
» P(—A)2Z2 = F 71 € P(E]1))V? x F12)(8)]

where P is a polynomial, strictly positive over R,

— In particular, if P(z) = (k* + )%, i.e. if we consider the SPDE
(K* — A2 =W

then Z has a Matérn covariance function

Cov(Z(z + h), Z(x)) = C(||h])) = W(H\Ihll)y%(ﬁ\\hll), v=a—df2
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MATERN RANDOM FIELDS

Modéle Matérn, nu =0.5 Modéle Matérn, nu =1 Modéle Matérn, nu =2
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Simulations of Gaussian random fields with a Matérn covariance
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Z8
B A FIRST SOLUTION: THE SPDE APPROACH ezoga’f;?mm

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 -
F:¢eRfs ——— P(-A)Y22, =W
P([I€]1%)

= W: Gaussian white noise
= P(=A)PZ = F 71 [ P([E]D)Y? x F[2)(8)]
where P is a polynomial, strictly positive over R,
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Z8
B A FIRST SOLUTION: THE SPDE APPROACH ezoga?wme

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 -
F:¢eRfs ——— P(-A)Y22, =W
P([I€]1%)

= W: Gaussian white noise
= P(=A)PZ = F 71 [ P([E]D)Y? x F[2)(8)]
where P is a polynomial, strictly positive over R,

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem Solution proposed
Non-euclidean domains, Define the SPDE on manifolds or use varying
Non-stationarity parameters

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



Z8
B A FIRST SOLUTION: THE SPDE APPROACH ezoga?wme

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 -
F:¢eRfs ——— P(-A)Y22, =W
P([I€]1%)

= W: Gaussian white noise
= P(=A)PZ = F 71 [ P([E]D)Y? x F[2)(8)]
where P is a polynomial, strictly positive over R,

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem Solution proposed

Big “N" problem Use the finite element method to solve the SPDE

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



o
m A CLASS OF RANDOM FIELDS ezoga’f;?ms

Let £ be a second-order self-adjoint elliptic operator with smooth coefficients, eg.
L=-A, £L=r*)—div(H(-)V)

= Spectral theorem on compact Riemannian manifolds M = (D, g):
— L has discrete eigenvalues {\j, : k € N} with smooth eigenfunctions {e; : k € N}
— The eigenfunctions {ex }ren can be taken to form an orthonormal basis of L?(M)

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion | 8
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Let £ be a second-order self-adjoint elliptic operator with smooth coefficients, eg.
L=-A, £L=r*)—div(H(-)V)
= Spectral theorem on compact Riemannian manifolds M = (D, g):

— L has discrete eigenvalues {\j, : k € N} with smooth eigenfunctions {e; : k € N}
— The eigenfunctions {ex }ren can be taken to form an orthonormal basis of L?(M)

= Consider the L?(M)-valued random variables defined by

Z=> (A Wi e

keN

where {Wp}ren ~ [IDN(O, 1)

and v : Ry — R such that |[y(\)| = Oy oo (|A7) with 3 > d/4 (eg. v(\) = (k% + x)~2/2)

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion
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Let £ be a second-order self-adjoint elliptic operator with smooth coefficients, eg.
L=-A, £L=r*)—div(H(-)V)
= Spectral theorem on compact Riemannian manifolds M = (D, g):

— L has discrete eigenvalues {\j, : k € N} with smooth eigenfunctions {e; : k € N}
— The eigenfunctions {ex }ren can be taken to form an orthonormal basis of L?(M)

= Consider the L?(M)-valued random variables defined by

Z=> (A Wi e

keN

where {Wp}ren ~ [IDN(O, 1)

and v : Ry — R such that |[y(\)| = Oy oo (|A7) with 3 > d/4 (eg. v(\) = (k% + x)~2/2)

= Covariance properties (Pereira, 2019): when (M, g) = ([0,1]%,¢) and £ = —A

Cov (Z(p),Z(p + dp)) = Cy ( gp(dp, (1p)> where  Cy = .7 '[y?]

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



B DISCRETIZING THE FIELD GEOLEARNING

L*(M)
Self-adjoint differential operator £

\

Spectral theorem: {(\g,ex) : k € N}
eigenvalues/functions of £

\

L?(M)-valued random variables

Z = Z /\k Wk €

keN

independent
Gaussian weights
* Lengths and angles
of tangent vectors u, v:
V' General approach
V" Local definition of covariance: lellp = /gp (12, )
Cov (Z(p),Z(p + dp)) = o ( gp(dp, t]p)) cos (9(u, v)) _ gp(u,v)

where Cy = .7 1[4 lullpllvllp
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B DISCRETIZING THE FIELD GEOLEARNING

L*(M)
Self-adjoint differential operator £

\

Spectral theorem: {(Ax,ex) : k € N}
eigenvalues/functions of £

\

L?(M)-valued random variables

Z:Z 'Y(/\k)Wk €L
keN

FEM basis Vi, = span {¢1,..., ¥y, }
L, = Galerkin approximation of £

"Spectral theorem”: {()\Eﬂh), e,(ch)) 1k e [[1,Nh]]}
eigenvalues/functions of £y,

A\

V,,-valued random variables

Ny, Np,
2= 3 OP O - 3 7
k=1 i=1

independent
Gaussian weights

independent
Gaussian weights

\

V" Local definition of covariance:

Cov (Z(p),Z(p+dp)) =~ Cy ( gp(dp, rlp))
where Cy = .7 1[4

V' General approach
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B DISCRETIZING THE FIELD

L*(M)
Self-adjoint differential operator £

\

Spectral theorem: {(Ax,ex) : k € N}
eigenvalues/functions of £

\

L?(M)-valued random variables

Z Z /\k Wk €L

keN independent

Gaussian weights

\

V" Local definition of covariance:

Cov (Z(p),Z(p+dp)) =~ Cy ( gp(dp, r/p))
where Cy = .7 1[4

V' General approach
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FEM basis Vi, = span {¢1,..., ¥y, }
L, = Galerkin approximation of £

"Spectral theorem”: {()\Lh), e,(ch)) 1k e [[1,Nh]]}

eigenvalues/functions of £y,

A\

VN -valued random variables

zﬂ/ (AW () _ ZZ“L
%,_/

independent
Gaussian weights

\

v Explicit computation (Lang and Pereira, 2023):
Z=C ' S)W, W ~N(,I)

where § = C~'/2RC1/?,
C = [(Yi, ¥)], R = [(Labi, )]

— sparse matrices



B DISCRETIZING THE FIELD GEOLEARNING

L*(M)
Self-adjoint differential operator £

\

Spectral theorem: {(Ax,ex) : k € N}
eigenvalues/functions of £

\

L?(M)-valued random variables

FEM basis Vi, = span {¢1,..., ¥y, }
L, = Galerkin approximation of £

"Spectral theorem”: {()\Eﬂh), e,(ch)) 1k e [[1,Nh]]}
eigenvalues/functions of £y,

A\

VN -valued random variables

Z = Z (M)W ex <—:> Z’y )\(h) W(h) (h) ZZILL
EN FEM convergence — ﬁ—/md —
Gaussian weights res:ult Gaussle:: wzlghts

\

V" Local definition of covariance:

Cov (Z(p),Z(p+dp)) =~ Cy ( gp(dp, r/p))

=7

Y
/

\

v Explicit computation (Lang and Pereira, 2023):
(Z=C"P(SW. W ~NO.T)

V' General approach

where § = C~'/2RC1/?,
C = [(Yi, ¥)], R = [(Labi, )]

— sparse matrices

where
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. OUTL'NE GEOgING

Il. Spatio-temporal extension

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



o3
m BROWNIAN MOTION AND WHITE NOISE czogz’f:zm

= A Wiener process / Brownian motion (53;);c[o,r] is a (real-valued) stochastic process such that
— Bo =0 and (Bt)iefo, 1) has (almost-surely) continuous trajectories
— Forany0<t; <+ - <t, <T,

/Bt1a5t2 - 51517 ce 7ﬁtn_1 - /Btn

are independent and are Gaussian-distributed:
ﬂti+l - ﬂti ~ N(O, (ti—l-l - tz))

1.0

-05 0.0 05
|

-1.0

0.0 0.2 0.4 0.6 0.8 1.0
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o3
m BROWNIAN MOTION AND WHITE NOISE Gzogéguns

= A Wiener process / Brownian motion (53;).c[0,r] is a (real-valued) stochastic process such that

— Bo =0 and (B¢):e[o, 1) has (almost-surely) continuous trajectories
— Forany 0<t; <---<t, <T,

61‘/1 ) ,Btz - ﬂtl P ‘82‘/”71 - Bt,,,

are independent and are Gaussian-distributed:

/jli+l - ﬁLi ~ N(07 (tiJrl - t'i))

= If W is a white noise, then (;);c[o,7) defined as

By = W([0,T]) = /1[0’t]dW :/0 W(dt)

is a Brownian motion.
— White noise can be seen as the (weak) derivative of Brownian motion

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



X3
m SPACE-TIME NOISE? Gzogﬁwe

= Current SPDE:
(K* = A2 =W
— Space-time equivalent of white noise W ? — (Q-Wiener process
= A Q-Wiener process (B?)te[o 7] is a L?(D)-valued stochastic process such that

- BOQ =0 and (BY )telo,) has (almost-surely) continuous trajectories

— Forany 0<t; <---<t, <T,

BE, B —BE,..., B B2

)

are independent and are Gaussian-distributed: for any ¢ € L?(D),

(B, = BE,6) ~ N(O, (i1 — 1:)(Q0, 9))
for some bounded, non-negative, symmetric and linear operator )

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



o3
m SPACE-TIME NOISE? Gzogﬁlms

= Current SPDE:
(K = A2 =W

— Space-time equivalent of white noise W 7 — Q-Wiener process

= A Q-Wiener process (BtQ)te[o,T] is a L?(D)-valued stochastic process such that
k
BE ="\ AsMel, tel0,T]
ieN
where (6§k))te[O,T] are independent Brownian motions, {ekQ}keN is an orthonormal basis of
L?(D) consisting of eigenvectors of ), with eigenvalues {AkQ}keN :

Qe,? = )\ge,?

— "Karhunen-Loeve" decomposition

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion
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B SPATIO-TEMPORAL SPDE Gzogﬁlms

® Space-time random field (Z(t,2)):c(0,7],0cp Seen as a L?(D)-valued stochastic
process (Z¢)¢e(o,1]

= Consider the following SPDE / infinite dimensional SDE

Az + (k2 — A)*/?Z,dt = dBY

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



B SPATIO-TEMPORAL SPDE GEOLEARNING

® Space-time random field (Z(t,2)):c(0,1],0en Seen as a L*(D)-valued stochastic
process (Z¢)¢e(o,1]

= Consider the following SPDE / infinite dimensional SDE

A2 + (K — A)*/?Z,dt = dBY

® White-noise formulation

0%
ot
where Wr ® Wg is a space-time “white noise”, linked to BQ through

+ (52— A2 = Wy @ WY

Vt € [0,T), (Be,ds) — (Bo,bs) = (Wr@WE, 1104 ® o) //¢s YWr @ WE (dt, dz)

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion
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m DIFFUSION SPDE ezoga’f;?ms

Let {er}ren be an o.n.b. of L?(D) composed of eigenfunctions of —A with eigenvalalues {\ }xen

mlet Q= (k?2—A)" and k > 0,aq > 0,0, > 0, and consider the diffusion SPDE

with BE = (k2 + \) "/ 28 ed, e [0,

{dZt + (K2 — A)a 2, dt = dBY
keN

Zo = zg € LQ(D)

where (ﬁfk))te[o,T] are independent Brownian motions

— Existence and uniqueness of (weak and mild) solution if cg + vy > d/2

=0

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



o3
m DIFFUSION SPDE czogz’f:a)ums
Let {er}ren be an o.n.b. of L?(D) composed of eigenfunctions of —A with eigenvalalues {\ }xen
= Consider the diffusion SPDE

dZ; + (k% — A)* 2, dt = dBY
2o = z9 € LQ('D)

with BE =3 (k% + \o) /28N, t e [0,
keN

» Spectral decomposition of the SPDE solution:
Zy = Z Zt(k)e;C
kEN
where for each k, Z(*) satisfies a SDE
AZP 4+ (K2 + M) 2 dt = (52 + \) /2480, te (0,7
{Z(gk) = (20, ex)
— Independent Ornstein-Uhlenbeck process
4zM = 0, 2 dt + 7, A, t € (0,7

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion
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m DIFFUSION SPDE Gzogéguns

= Spectral decomposition of the SPDE solution:

2e=Y ZMer, te(0,T]
keN
where for each k, 0 = (k% + M\p)*, 7 = (K% 4+ \p)~**/2 and

4z® = —g, 2 dt + 7, dp®

= Explicit dynamic for the coeffcients Zt(k) — Gaussian + Markov process

2
k k — T, _
(2121 = 2) N2, S0 (1= 72501 (3t > 0)

= Covariance of the (unconditionned) process

2
Cov(Z8,, zM) = Z%kke*"k‘” (6t > 0)

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion
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m SOLVING THE DIFFUSION SPDE ezo&’?wm

= Method 1 : Spectral Approach

1. Pick a truncation order N

2. Simulate the OH processes Z(1) ..., Z(N) for t € (0, 7]
3. Return 2, = 2N zMe t € (0,7

— Need to know the eigendecomposition of —A....

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



o3
m SOLVING THE DIFFUSION SPDE Gzogmc

= Method 2 : Euler+FEM (Clarotto et al., 2022)

1. Time-discretization using (Implict) Euler

t+0t
Z’t+5t — Zt + (H2 — A)ad ZH_& ot = / CllBg2 = mwg
t

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



o3
m SOLVING THE DIFFUSION SPDE ezogz’f:rams

= Method 2 : Euler+FEM (Clarotto et al., 2022)

1. Time-discretization using (Implict) Euler
t48t
Z[+()/ — Z;/ (h — A)ad Z;H,()‘[ ot = / (1%? =V 5th
Ji

Np,
2. Space disctretization using FEM (Galerkin) to deduce that, with 2, = » _[z(];¢;,
i=1

(I + 6t(K2T + R)™0)CY/2204+00 = /220 4 /51CY2 (52T + R) = *w

where w ~ N(0,I), and C (diagonal mass lumped matrix), R (stiffness matrix) and
R =C"'2RC~'/? are sparse matrices

— Explicit expression for precision matrix of solution!

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



o3
m SOLVING THE DIFFUSION SPDE ezogz’f:rams

= Method 3 : Discrete spectral approach

Np,
1. Formulate the spectral solution in the FEM space: Z; = Z Zt(k)Ek where
k=1

AZP 4+ (W2 + A ZP dt = (52 + Ay) /28", te (0,7
25" = (=0, Ex)

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion
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m SOLVING THE DIFFUSION SPDE ezogz’f:gme

= Method 3 : Discrete spectral approach
Np,

1. Formulate the spectral solution in the FEM space: it = ZZ@Ek where
k=1

AZP 4+ (W2 + )™ ZP dt = (52 + Ay) /2B, te (0,7
{2{(}@ = (20, Ek)
2. Use the cond. dist. of OU processes + definition of —A}, to deduce that for any §t > 0
Zirsr = mgt(—Ah)zt + Jgt(—Ah)W,
where W is a white noise on the FEM space and mg;, o5; are given by

mét()\) — e—ét(n2+>\)ad’ Uét()\) _ (\/5)—1(,{2 + )\)—(ad—i-an)/Q\/l _ e—2(r2+N)¥a6t

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



4D
m SOLVING THE DIFFUSION SPDE ezogéiune

= Method 3 : Discrete spectral approach
Np

1. Formulate the spectral solution in the FEM space: Zt = Zz(k)Ek where
k=1

{d2§k> + (K24 M) ZF dt = (k2 + Ap) /248, te (0,7
78 = (20, By)
2. Use the cond. dist. of OU processes + definition of —A;, to deduce that for any §t > 0
2L+5L = ’”L(SL(*Ah)zt + U(SL(*Ah)wv
where W is a white noise on the FEM space and mg;, o5, are given by
mgt(A\) = et A o5t(A) = (V2) T H(K2 4 A)~(@atan)/2\/] _ g2+ 2)%abt

3. Use Galerkin-Chebyshev to compute the solution

Cl/2z(t+6t) _ mgt(ﬁ)CI/QZ(t) + Uét(-ﬁ)w
— Explicit expression for precision matrix of solution!

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion
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m COVARIANCE OF THE SOLUTION czogz’f:zm

Recall that 0 = (k2 + M), T = (K2 + M) ~2n/2
" For ¢, € L*(D), and t,u € R

7_2
Cov({Ze, 0), (Zepur ) = 3 Cov (2, ZI, ) e, o) e, o) = Y e ey, @) er, @)

2
keN keN O

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



%
m COVARIANCE OF THE SOLUTION Gzogms
Recall that 0 = (k2 + M), T = (K2 + M) ~2n/2
= For ¢, € L?(D), and t,u € R

2
T2 ou J
Cov ((Z¢, ), (Zigu, @ E Cov(Z (k) Zfizl)(ek,@(ek,go): g ﬁe Kt er, o) (ex, )
kEN keN <7k
= Spatial trace : u =10

,7_2
Cov((2e,8), (24, )) = Y- -ews B){ews ) = 3 5+ €)™ e, 0} e, )

keN keN
— Same as the solution of the SPDE (k2 — A)(@atan)/2y — /2 W

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



oD
m COVARIANCE OF THE SOLUTION Gzogégune

Recall that 0 = (k2 + M), T = (K2 + M) ~2n/2
" For ¢, p € L*(D), and t,u € R

2
‘ ] : Tk —0pu .
Cov ((Z¢, ), (Zigu, @) = E COV(Zt(A),Zfiz)<€k,¢><€k,§0>: E Tgke Ot (en, o) (en, @)
keN keN

= Spatial trace : u =10

Cov((Ze, ), (21, 0)) = D 279 (exs @) (er, ) = D %(”2 + M) T Caten) ey 6) (e, o)

keN keEN
— Same as the solution of the SPDE (k2 — A)(@atan)/2y — /2 W

= Temporal trace : ¢ = ¢

COI‘((Zt’ ¢> Z’tJruv ()b Z Z _Okuv Ck = (KQ + )‘k)_(ad+an) <ek) ¢>2
keN £41eN

— Mixture of exponential correlation functions!

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion
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= Time regularity: Almost-nowhere differentiable, but paths are Holder-continuous with order
1/2 — ¢ for any € € (0,1/2), i.e.

E[(24,6) = (Zt+u, d)]] < Clu|'/?~* (1)

— Regularity inherited from the Brownian motion! Can we do better?

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



o3
. OUTL'NE GEOgING

I11. Diffusion SPDE with fractional noise

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



= A fractional Brownian motion (8{);c(o, 77 with Hurst index H € (0,1)
is a Gaussian process such that .

— (B)iejo,1) has (almost-surely) continuous trajectories
— Its covariance function is given by .

1
Cov(B{T, B5) = S (It + [s[*™ — [t — s*7)

oo o0z o 0

H=0.75

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion
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4D
B FRACTIONAL BROWNIAN MOTION czogme

= A fractional Brownian motion ({7 );c(o,7) with Hurst index H € (0,1)
is a Gaussian process such that
— (B)iejo,1) has (almost-surely) continuous trajectories 1L
— Its covariance function is given by AW

1
Cov(B{T, B;) = S (It + [s[*7 — [t — s*7)

= Some properties
— Particular case : H = 1/2 — (standard) Brownian motion
— Associated variogram: Var(3H — BH) oc |t — s|?# ] H=05
— Paths Holder-continuous of order H — ¢ for any € € (0, H)
— Stationary increments: 37 — g ~ gH

— Increments are positively correlated if H > 1/2 (— tends to

continue the trends) and negatively correlated if H < 1/2 H=0.75
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4D
B FRACTIONAL BROWNIAN MOTION Gzogiuns

= A fractional Brownian motion ({7 );c(o,7) with Hurst index H € (0,1)
is a Gaussian process such that
— (B)iejo,1) has (almost-surely) continuous trajectories 1L
— Its covariance function is given by

1
H oH 2H 2H 2H
Cov(B;", 8;7) = S (L™ + [sI™ — [t = s|7)
= Note: if H # 1/2, the increments are not independent — Non . N
Markovian process (with long-range dependence for H > 1/2) oW \ e T
. . . H 0.5
= Remark: Fractional Brownian motion can also be seen as an
integrated (standard) Brownian motion
= (Fractional) Itd calculus and (fractional) @Q-Wiener processes are N
well-defined for fractional Brownian motions e
H=0.75
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o3
m FRACTIONAL DIFFUSION SPDE ezo&’?wm

Let {er}ren be an o.n.b. of L?(D) composed of eigenfunctions of —A with eigenvalalues {\ }xen

= Consider the diffusion SPDE
{dzt + (K2 — A)a 2, dt = dBTO

: H.Q _ 2 —am/2 p(H k) Q
20 = 20 € L3(D) with B, = Z(KJ + k) By ey, tel0,T]

keN

where (BéH’k))t€[07T] are independent fractional Brownian motions

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



o3
m FRACTIONAL DIFFUSION SPDE Gzogguns

Let {er}ren be an o.n.b. of L?(D) composed of eigenfunctions of —A with eigenvalalues {\ }xen

m Consider the diffusion SPDE

dz 2 — A)ea 2, dt = dBHEC A
{z S A DR A e
0 =20 € L*(D) keN

where (yﬁt(H"k))te[o,T] are independent fractional Brownian motions

» Spectral decomposition of the SPDE solution:

) [z £ (k24 A2 Z At = (k2 + A)mo2dBHR e (0, T)
2y = E Z; e, with (k)
kEN Z() = <207 6k>

— Independent Fractional Ornstein-Uhlenbeck process
dz® = —0, 2 dt + 7, APt e (0,7
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o3
m COVARIANCE OF THE STATIONARY SOLUTION Gzogﬁlms

Recall that 0 = (k2 + M), T = (K2 + M) ~2n/2
= For ¢, € L*(D), and t,u € R

COV(<Z’ta ¢> Zt-‘rua Z Okt ekv eka (p>
keN
_ 0 my _ PQHA+sin(mH) 77 [ ezl 2"
where Cy(u) = Cov(Z,”, Zy},) = - 29”2:1{ K ( /0;9)1+7x2d&j
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o3
m COVARIANCE OF THE STATIONARY SOLUTION Gzogguns

Recall that 0 = (k2 + M), T = (K2 + M) ~2n/2
= For ¢, € L3(D), and t,u € R

Cov((Zt,qb) (Ztgu, P Z Cr(u){eg, o) ek, @)
keN
B ok C(2H + Usin(nH) 72 [ ezl
where Cj(u) = Cov(z®), 2" ) = i 20‘%” [ K o By
= Spatial trace : © =10
2
-
COV(<Zt7 ¢>a <Z't7 90>) X Z 295[{ <ek7 ¢><6k7 90)
keN "7k
— Same as the solution of the SPDE (k2 — A)Heatan)/2y — /5 W
» Temporal trace : ¢ = ¢
COI‘(<Z ¢)> <Z ¢>) Z Ck /oo eir(u/ek) |$|1_2Hd Tl? < ¢>2
ts ) t+u>s = - 5 dT, Ck = o7 \Ek>»
+ S Y ena 1422 202H
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o3
m COVARIANCE OF THE STATIONARY SOLUTION Gzogguns

Recall that 0 = (k2 + M), T = (K2 + M) ~2n/2

= Temporal trace : ¢ = ¢

Ck > ix(u/&k)|x|172H Tk2 2
Cor((21,6), Rapn ) = Y s [ o, o= k(e 0)

2 - 2H
en ZleN C] 1+ 29k
<]
- — H=0.25
—— H=05
g i H=0.75
@]
o ©
g
S <
8o
3
O o
o
o —_—
o
o
0 2 4 6 8 10

u
, 1-2H
Covariance function p(u) = [°7_ e?®(4/0k) %dz
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m COMPUTING THE SOLUTION Gzogz’/;?mrle

= Remark: The noise increments are now time-correlated

= Method : Discrete spectral + Implicit Euler time-stepping

Np,
1. Formulate the spectral solution in the FEM space: Z; = ZZt(k)Ek where
k=1

Nn > (k) 2 ag 7(k) 2 —an/243kH)

~ ~ dz;" + + A ) 7 dt = + n/2d

2 = E Zt(k)E;C where A(Is) (k k) t (k% + Ag) By
P 28 = (20, By)

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion



® COMPUTING THE SOLUTION GEOLEARNING

= Remark: The noise increments are now time-correlated

= Method : Discrete spectral + Implicit Euler time-stepping
Np

1. Formulate the spectral solution in the FEM space: Zt = ZZ@Ek where
k=1

N Z(k) | (.2 aq 7(k) 2 —an /24 gk H)

~ ~(k dZ" 4+ (k% + Ap)*e 227 dt = + Ayg n/2dp3

2y = Z ng)Ek where A(kf> (k k) t G k) Iop
k=1 Zy ' = (20, Ek)

2. Generate independent fBm trajectories th) = (ﬁt(l’H)7 . ,ﬁt(Nh’H)) over [0, 7
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® COMPUTING THE SOLUTION GEOLEARNING

= Remark: The noise increments are now time-correlated

= Method : Discrete spectral + Implicit Euler time-stepping
Np

1. Formulate the spectral solution in the FEM space: Zt = ZZ@E;? where
k=1

N Z(k) | (.2 aq 7(k) 2 —an/2 930k H)

~ Sk dz," + + AR 72 dt = + AL)"/244

Zy = Z Zy”) E,.  where A(,§> (% k) t (r k) i
k=1 Zy ' = (20, Ek)

2. Generate independent fBm trajectories ,Gﬁh) =( t(l’H), o ,/ﬁgN’”H)) over [0, 7
Np,

3. Use Implicit time step on SDEs + Change of basis to deduce that, with Z; = Z[z(t)]iz/zi,
i=1

where (I+0t(s2I+R))CY/22(H00 = CV/2 20 1 /5tCV2 (k2 T+ R) =/ (BL1s, —B1")
— Explicit expression for precision matrix of solution with Kronecker products!
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. EXAMPLES OF SAMPLES H—O 5 GEOLEARNING
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. EXAMPLES OF SAMPLES H—O 5 GEOLEARNING
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o3
m OUTLOOKS ezogz’f:rams

= Stochastic analysis of numerical scheme (ongoing)
= Link to fractional operators

= Going further: What if we replaced the fBm with even smoother processes?

Matern process instead of fBm

=0

° - f ) Q (
| A /fw\
) n s w/\

0.
t
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