Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion

M. PEREIRA

Geosciences and Geoengineering Department, Mines Paris - PSL University mike.pereira@minesparis.psl.eu

Workshop Geolearning @ Frejus March 31st, 2025

I. Introduction and context

II. Spatio-temporal extension

III. Diffusion SPDE with fractional noise

GEOSTATISTICAL MODELING

Geostatistical paradigm: over the spatial domain $\ensuremath{\mathfrak{D}}$

 $\begin{array}{lll} \underline{ Gaussian \ Random \ Field} & \underline{ Observed \ variable} \\ Z: \{Z(\boldsymbol{p}): \boldsymbol{p} \in \mathcal{D}\} & \underline{ Realization} & z: \{z(\boldsymbol{p}): \boldsymbol{p} \in \mathcal{D}\} \\ & \underline{ High \ correlation} & High \ "similarity" \end{array}$

- Allows to model data which are not independent, identically distributed
- Covariance function C_Z :

 $\begin{array}{rcl} C_Z & : & \mathcal{D} \times \mathcal{D} & \to & \mathbb{R} \\ & & (\boldsymbol{p}_1, \boldsymbol{p}_2) & \mapsto & C_Z(\boldsymbol{p}_1, \boldsymbol{p}_2) = \operatorname{Cov}(Z(\boldsymbol{p}_1), Z(\boldsymbol{p}_2)) \end{array}$

 \rightarrow used to model the spatial structure observed on the variable/data

Higher time regularity of SPDE-based Gaussian processes using fractional brownian motion

CHALLENGES IN PRACTICE

Non-euclidean domains

 Extensive literature for the sphere: Marinucci and Peccati (2011); Lang et al. (2015); Lantuéjoul et al. (2019); Emery and Porcu (2019)

Non-stationarity

 Examples of proposed methods: Karhunen-Loève expansions (Lindgren, 2012), Space deformation models (Sampson and Guttorp, 1992), Convolution models (Higdon et al., 1999)

Big "N" problem

 Need to restrict the choice of models to work with sparse matrices: Compactly-supported or tapered covariance functions (Gneiting, 2002; Furrer et al., 2006), Markovian models (Rue and Held, 2005)

THE SPDE APPROACH

Basic idea: if \mathcal{Z} is an isotropic Markovian field over \mathbb{R}^d , then it is **equivalently** characterized by (Whittle, 1954; Rozanov, 1977):

 $\begin{array}{l} \textbf{Spectral density} \\ \Gamma: \boldsymbol{\xi} \in \mathbb{R}^d \mapsto \frac{1}{P(\|\boldsymbol{\xi}\|^2)} \end{array}$

Stochastic partial differential equation (SPDE)

$$egin{array}{c} P(-\Delta)^{1/2}\mathcal{Z} = \mathcal{W} \end{array}$$

• \mathcal{W} : Gaussian white noise • $P(-\Delta)^{1/2}\mathcal{Z} := \mathscr{F}^{-1} \left[\boldsymbol{\xi} \mapsto P(\|\boldsymbol{\xi}\|^2)^{1/2} \times \mathscr{F}[\mathcal{Z}](\boldsymbol{\xi}) \right]$

where P is a **polynomial**, strictly positive over \mathbb{R}_+

THE SPDE APPROACH

 $\Gamma: \boldsymbol{\xi} \in \mathbb{R}^d \mapsto \frac{1}{P(\|\boldsymbol{\xi}\|^2)}$

Basic idea: if \mathcal{Z} is an isotropic Markovian field over \mathbb{R}^d , then it is **equivalently** characterized by (Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)

$$P(-\Delta)^{1/2}\mathcal{Z} = \mathcal{W}$$

•
$$\mathcal{W}$$
: Gaussian white noise
• $P(-\Delta)^{1/2}\mathcal{Z} := \mathscr{F}^{-1} \left[\boldsymbol{\xi} \mapsto P(\|\boldsymbol{\xi}\|^2)^{1/2} \times \mathscr{F}[\mathcal{Z}](\boldsymbol{\xi}) \right]$

where P is a **polynomial**, strictly positive over \mathbb{R}_+

ightarrow In particular, if $P(x)=(\kappa^2+x)^{lpha}$, i.e. if we consider the SPDE $(\kappa^2-\Delta)^{lpha/2}\mathcal{Z}=\mathcal{W}$

then ${\boldsymbol Z}$ has a Matérn covariance function

$$\operatorname{Cov}(\mathcal{Z}(\boldsymbol{x}+\boldsymbol{h}),\mathcal{Z}(\boldsymbol{x})) = C(\|h\|) = \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)} (\kappa \|h\|)^{\nu} \mathcal{K}_{\nu}(\kappa \|h\|), \quad \nu = \alpha - d/2$$

MATÉRN RANDOM FIELDS

Simulations of Gaussian random fields with a Matérn covariance

A FIRST SOLUTION: THE SPDE APPROACH

Spectral density $\Gamma: \boldsymbol{\xi} \in \mathbb{R}^d \mapsto rac{1}{P(\|\boldsymbol{\xi}\|^2)}$

Stochastic partial differential equation (SPDE)

$$P(-\Delta)^{1/2}\mathcal{Z}=\mathcal{W}$$

• \mathcal{W} : Gaussian white noise • $P(-\Delta)^{1/2}\mathcal{Z} := \mathscr{F}^{-1} \left[\boldsymbol{\xi} \mapsto P(\|\boldsymbol{\xi}\|^2)^{1/2} \times \mathscr{F}[\mathcal{Z}](\boldsymbol{\xi}) \right]$

where P is a **polynomial**, strictly positive over \mathbb{R}_+

A FIRST SOLUTION: THE SPDE APPROACH

Basic idea: if \mathcal{I} is an isotropic Markovian field over \mathbb{R}^d , then it is **equivalently** characterized by (Whittle, 1954; Rozanov, 1977):

Stochastic partial differential equation (SPDE)

$$P(-\Delta)^{1/2}\mathcal{Z}=\mathcal{W}$$

• \mathcal{W} : Gaussian white noise • $P(-\Delta)^{1/2}\mathcal{I} := \mathscr{F}^{-1} \left[\boldsymbol{\xi} \mapsto P(\|\boldsymbol{\xi}\|^2)^{1/2} \times \mathscr{F}[\mathcal{I}](\boldsymbol{\xi}) \right]$

where P is a **polynomial**, strictly positive over \mathbb{R}_+

Spectral density

 $\Gamma: \boldsymbol{\xi} \in \mathbb{R}^d \mapsto \frac{1}{P(\|\boldsymbol{\xi}\|^2)}$

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem	Solution proposed
Non-euclidean domains,	Define the SPDE on manifolds or use varying
Non-stationarity	parameters

A FIRST SOLUTION: THE SPDE APPROACH

(Whittle, 1954; Rozanov, 1977):

Basic idea: if \mathcal{I} is an isotropic Markovian field over \mathbb{R}^d , then it is **equivalently** characterized by

Spectral density $\Gamma: \boldsymbol{\xi} \in \mathbb{R}^d \mapsto \frac{1}{P(\|\boldsymbol{\xi}\|^2)}$ Stochastic partial differential equation (SPDE)

$$egin{array}{c} P(-\Delta)^{1/2}\mathcal{Z} = \mathcal{W} \end{array}$$

• \mathcal{W} : Gaussian white noise • $P(-\Delta)^{1/2}\mathcal{Z} := \mathscr{F}^{-1} \left[\boldsymbol{\xi} \mapsto P(\|\boldsymbol{\xi}\|^2)^{1/2} \times \mathscr{F}[\mathcal{Z}](\boldsymbol{\xi}) \right]$

where P is a **polynomial**, strictly positive over \mathbb{R}_+

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem	Solution proposed
Big "N" problem	Use the finite element method to solve the SPDE

A CLASS OF RANDOM FIELDS

Let ${\mathcal L}$ be a second-order self-adjoint elliptic operator with smooth coefficients, eg.

$$\mathcal{L}=-\Delta,\quad \mathcal{L}=\kappa^2(\cdot)-{\rm div}(H(\cdot)\nabla)$$

- Spectral theorem on compact Riemannian manifolds $\mathcal{M} = (\mathcal{D}, g)$:
 - \mathcal{L} has discrete eigenvalues $\{\lambda_k : k \in \mathbb{N}\}$ with smooth eigenfunctions $\{e_k : k \in \mathbb{N}\}$
 - The eigenfunctions $\{e_k\}_{k\in\mathbb{N}}$ can be taken to form an orthonormal basis of $L^2(\mathcal{M})$

A CLASS OF RANDOM FIELDS

Let ${\mathcal L}$ be a second-order self-adjoint elliptic operator with smooth coefficients, eg.

$$\mathcal{L} = -\Delta, \quad \mathcal{L} = \kappa^2(\cdot) - \operatorname{div}(H(\cdot)\nabla)$$

- Spectral theorem on compact Riemannian manifolds $\mathcal{M} = (\mathcal{D}, g)$:
 - \mathcal{L} has discrete eigenvalues $\{\lambda_k : k \in \mathbb{N}\}$ with smooth eigenfunctions $\{e_k : k \in \mathbb{N}\}$
 - The eigenfunctions $\{e_k\}_{k\in\mathbb{N}}$ can be taken to form an orthonormal basis of $L^2(\mathcal{M})$
- Consider the $L^2(\mathcal{M})$ -valued random variables defined by

$$\mathbb{Z} = \sum_{k \in \mathbb{N}} \gamma(\lambda_k) W_k \, \, e_k \qquad \text{where } \{W_k\}_{k \in \mathbb{N}} \sim \mathsf{IIDN}(0,1)$$

and $\gamma: \mathbb{R}_+ \to \mathbb{R}$ such that $|\gamma(\lambda)| = \mathcal{O}_{\lambda \to \infty}(|\lambda|^{-\beta})$ with $\beta > d/4$ (eg. $\gamma(\lambda) = (\kappa^2 + x)^{-\alpha/2}$)

A CLASS OF RANDOM FIELDS

Let ${\mathcal L}$ be a second-order self-adjoint elliptic operator with smooth coefficients, eg.

$$\mathcal{L} = -\Delta, \quad \mathcal{L} = \kappa^2(\cdot) - \operatorname{div}(H(\cdot)\nabla)$$

- Spectral theorem on compact Riemannian manifolds $\mathcal{M} = (\mathcal{D}, g)$:
 - \mathcal{L} has discrete eigenvalues $\{\lambda_k : k \in \mathbb{N}\}$ with smooth eigenfunctions $\{e_k : k \in \mathbb{N}\}$
 - The eigenfunctions $\{e_k\}_{k\in\mathbb{N}}$ can be taken to form an orthonormal basis of $L^2(\mathcal{M})$
- Consider the $L^2(\mathcal{M})$ -valued random variables defined by

$$\mathcal{Z} = \sum_{k \in \mathbb{N}} \gamma(\lambda_k) W_k \ e_k \qquad \text{where } \{W_k\}_{k \in \mathbb{N}} \sim \mathsf{IIDN}(0,1)$$

and $\gamma: \mathbb{R}_+ \to \mathbb{R}$ such that $|\gamma(\lambda)| = \mathcal{O}_{\lambda \to \infty}(|\lambda|^{-\beta})$ with $\beta > d/4$ (eg. $\gamma(\lambda) = (\kappa^2 + x)^{-\alpha/2}$)

- Covariance properties (Pereira, 2019): when $(\mathcal{M},g)=([0,1]^d,g)$ and $\mathcal{L}=-\Delta$

$$\operatorname{Cov}\left(\mathcal{Z}(\boldsymbol{p}),\mathcal{Z}(\boldsymbol{p}+d\boldsymbol{p})\right) \approx C_0\left(\sqrt{g_{\boldsymbol{p}}(d\boldsymbol{p},d\boldsymbol{p})}\right) \quad \text{where} \quad C_0 = \mathscr{F}^{-1}[\gamma^2]$$

 $L^2(\mathcal{M})$ Self-adjoint differential operator \mathcal{L} Spectral theorem: $\{(\lambda_k, e_k) : k \in \mathbb{N}\}$ eigenvalues/functions of \mathcal{L} $L^2(\mathcal{M})$ -valued random variables $\mathcal{Z} = \sum_{k \in \mathbb{N}} \quad \underbrace{\gamma(\lambda_k) W_k}_{\text{independent}} \quad e_k$ independen Gaussian weights General approach Local definition of covariance: $\operatorname{Cov}\left(\mathcal{Z}(\boldsymbol{p}),\mathcal{Z}(\boldsymbol{p}+d\boldsymbol{p})\right) \approx C_0\left(\sqrt{g_{\boldsymbol{p}}(d\boldsymbol{p},d\boldsymbol{p})}\right)$ where $C_0 = \mathscr{F}^{-1}[\dot{\gamma}^2]$

$$\|\boldsymbol{u}\|_{\boldsymbol{p}} = \sqrt{g_{\boldsymbol{p}}(\boldsymbol{u}, \boldsymbol{u})}$$
$$\cos\left(\theta(\boldsymbol{u}, \boldsymbol{v})\right) = \frac{g_{\boldsymbol{p}}(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\|_{\boldsymbol{p}} \|\boldsymbol{v}\|_{\boldsymbol{p}}}$$

FEM basis $V_{N_h} = \operatorname{span} \{\psi_1, \ldots, \psi_{N_h}\}$ $\mathcal{L}_{h} = \mathsf{Galerkin}$ approximation of \mathcal{L} "Spectral theorem": $\left\{ (\lambda_k^{(h)}, e_k^{(h)}) : k \in [\![1, N_h]\!] \right\}$ eigenvalues/functions of \mathcal{L}_{h} $V_{N_{h}}$ -valued random variables $\mathcal{Z}_{h} = \sum_{k=1}^{N_{h}} \underbrace{\gamma(\lambda_{k}^{(h)}) W_{k}^{(h)}}_{\text{independent}} e_{k}^{(h)} = \sum_{i=1}^{N_{h}} Z_{i} \psi_{i}$ Gaussian weights

FEM basis $V_{N_h} = \operatorname{span} \{\psi_1, \ldots, \psi_{N_h}\}$ $\mathcal{L}_{h} = \mathsf{Galerkin}$ approximation of \mathcal{L} "Spectral theorem": $\left\{ (\lambda_k^{(h)}, e_k^{(h)}) : k \in [\![1, N_h]\!] \right\}$ eigenvalues/functions of \mathcal{L}_h $V_{N_{h}}$ -valued random variables $\mathcal{Z}_{h} = \sum_{k=1}^{N_{h}} \underbrace{\gamma(\lambda_{k}^{(h)}) W_{k}^{(h)}}_{\text{independent}} e_{k}^{(h)} = \sum_{i=1}^{N_{h}} Z_{i} \psi_{i}$ Gaussian weights Explicit computation (Lang and Pereira, 2023):

$$\boldsymbol{Z} = \boldsymbol{C}^{-1/2} \gamma(\boldsymbol{S}) \boldsymbol{W}, \quad \boldsymbol{W} \sim \mathcal{N}(0, \boldsymbol{I})$$

where
$$oldsymbol{S} = oldsymbol{C}^{-1/2} oldsymbol{R} oldsymbol{C}^{-1/2}$$
, $oldsymbol{C} = \left[\langle \psi_i, \psi_j \rangle
ight], oldsymbol{R} = \left[\langle \mathcal{L} \psi_i, \psi_j \rangle
ight]$

ightarrow sparse matrices

EXAMPLES OF SAMPLED RANDOM FIELDS

I. Introduction and context

II. Spatio-temporal extension

III. Diffusion SPDE with fractional noise

BROWNIAN MOTION AND WHITE NOISE

- A Wiener process / Brownian motion $(\beta_t)_{t \in [0,T]}$ is a (real-valued) stochastic process such that
 - $-\beta_0=0$ and $(eta_t)_{t\in[0,T]}$ has (almost-surely) continuous trajectories
 - For any $0 \leq t_1 < \cdots < t_n \leq T$,

$$\beta_{t_1}, \beta_{t_2} - \beta_{t_1}, \dots, \beta_{t_{n-1}} - \beta_{t_n}$$

are independent and are Gaussian-distributed:

$$\beta_{t_{i+1}} - \beta_{t_i} \sim \mathcal{N}(0, (t_{i+1} - t_i))$$

BROWNIAN MOTION AND WHITE NOISE

- A Wiener process / Brownian motion $(\beta_t)_{t \in [0,T]}$ is a (real-valued) stochastic process such that
 - $-\beta_0=0$ and $(\beta_t)_{t\in[0,T]}$ has (almost-surely) continuous trajectories
 - For any $0 \leq t_1 < \cdots < t_n \leq T$,

$$\beta_{t_1}, \beta_{t_2} - \beta_{t_1}, \dots, \beta_{t_{n-1}} - \beta_{t_n}$$

are independent and are Gaussian-distributed:

$$\beta_{t_{i+1}} - \beta_{t_i} \sim \mathcal{N}(0, (t_{i+1} - t_i))$$

• If \mathcal{W} is a white noise, then $(\beta_t)_{t\in[0,T]}$ defined as

$$\beta_t = \mathcal{W}([0,T]) = \int \mathbf{1}_{[0,t]} d\mathcal{W} = \int_0^t \mathcal{W}(dt)$$

is a Brownian motion.

ightarrow White noise can be seen as the (weak) derivative of Brownian motion

■ SPACE-TIME NOISE?

Current SPDE:

$$(\kappa^2-\Delta)^{\alpha/2}\mathcal{Z}=\mathcal{W}$$

 \rightarrow Space-time equivalent of white noise \mathcal{W} ? \rightarrow Q-Wiener process

• A *Q*-Wiener process $(\mathcal{B}_t^Q)_{t \in [0,T]}$ is a $L^2(\mathcal{D})$ -valued stochastic process such that $-\mathcal{B}_0^Q = 0$ and $(\mathcal{B}_t^Q)_{t \in [0,T]}$ has (almost-surely) continuous trajectories

$$-$$
 For any $0 \leq t_1 < \cdots < t_n \leq T$,

$$\mathcal{B}_{t_1}^Q, \mathcal{B}_{t_2}^Q - \mathcal{B}_{t_1}^Q, \dots, \mathcal{B}_{t_{n-1}}^Q - \mathcal{B}_{t_n}^Q$$

are independent and are Gaussian-distributed: for any $\phi \in L^2(\mathcal{D})$,

$$\langle \mathcal{B}^Q_{t_{i+1}} - \mathcal{B}^Q_{t_i}, \phi \rangle \sim \mathcal{N}(0, (t_{i+1} - t_i) \langle Q\phi, \phi \rangle)$$

for some bounded, non-negative, symmetric and linear operator Q

■ SPACE-TIME NOISE?

Current SPDE:

$$(\kappa^2 - \Delta)^{\alpha/2} \mathcal{Z} = \mathcal{W}$$

 \rightarrow Space-time equivalent of white noise \mathcal{W} ? \rightarrow Q-Wiener process

• A $Q\text{-Wiener process }(\mathfrak{B}^Q_t)_{t\in[0,T]}$ is a $L^2(\mathfrak{D})\text{-valued stochastic process such that}$

$$\mathcal{B}^Q_t = \sum_{i \in \mathbb{N}} \sqrt{\lambda^Q_k} \beta^{(k)}_t e^Q_k, \quad t \in [0,T]$$

where $(\beta_t^{(k)})_{t \in [0,T]}$ are independent Brownian motions, $\{e_k^Q\}_{k \in \mathbb{N}}$ is an orthonormal basis of $L^2(\mathcal{D})$ consisting of eigenvectors of Q, with eigenvalues $\{\lambda_k^Q\}_{k \in \mathbb{N}}$:

$$Q e^Q_k = \lambda^Q_k e^Q_k$$

 \rightarrow "Karhunen-Loeve" decomposition

SPATIO-TEMPORAL SPDE

- Space-time random field (𝔅(t, x))_{t∈[0,T],x∈𝔅} seen as a L²(𝔅)-valued stochastic process (𝔅_t)_{t∈[0,T]}
- Consider the following SPDE / infinite dimensional SDE

$$\mathrm{d}\mathfrak{Z}_t + (\kappa^2 - \Delta)^{\alpha/2} \mathfrak{Z}_t \mathrm{d}t = \mathrm{d}\mathfrak{B}_t^Q$$

SPATIO-TEMPORAL SPDE

- Space-time random field (Z(t, x))_{t∈[0,T],x∈D} seen as a L²(D)-valued stochastic process (Z_t)_{t∈[0,T]}
- Consider the following SPDE / infinite dimensional SDE

$$\mathrm{d}\mathfrak{Z}_t + (\kappa^2 - \Delta)^{\alpha/2} \mathfrak{Z}_t \mathrm{d}t = \mathrm{d}\mathfrak{B}_t^Q$$

White-noise formulation

$$\frac{\partial \mathcal{Z}}{\partial t} + (\kappa^2 - \Delta)^{\alpha/2} \mathcal{Z} = \mathcal{W}_T \otimes \mathcal{W}_S^Q$$

where $\mathcal{W}_T \otimes \mathcal{W}_S^Q$ is a space-time "white noise", linked to \mathcal{B}_t^Q through $\forall t \in [0,T], \quad \langle \mathcal{B}_t, \phi_S \rangle - \langle \mathcal{B}_0, \phi_S \rangle = \langle \mathcal{W}_T \otimes \mathcal{W}_S^Q, \mathbf{1}_{[0,t]} \otimes \phi_S \rangle = \int_0^t \int_{\mathcal{D}} \phi_S(x) \mathcal{W}_T \otimes \mathcal{W}_S^Q(\mathrm{d}t, \mathrm{d}x)$

DIFFUSION SPDE

Let $\{e_k\}_{k\in\mathbb{N}}$ be an o.n.b. of $L^2(\mathcal{D})$ composed of eigenfunctions of $-\Delta$ with eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}}$

• Let $Q = (\kappa^2 - \Delta)^{-\alpha_n}$ and $\kappa > 0, \alpha_d \ge 0, \alpha_n \ge 0$, and consider the diffusion SPDE

$$\begin{cases} \mathrm{d}\mathcal{Z}_t + (\kappa^2 - \Delta)^{\alpha_\mathrm{d}} \ \mathcal{Z}_t \ \mathrm{d}t = \mathrm{d}\mathcal{B}_t^Q \\ \mathcal{Z}_0 = z_0 \in L^2(\mathcal{D}) \end{cases} \quad \text{with } \mathcal{B}_t^Q = \sum_{k \in \mathbb{N}} (\kappa^2 + \lambda_k)^{-\alpha_\mathrm{n}/2} \beta_t^{(k)} e_k^Q, \quad t \in [0, T] \end{cases}$$

where $(\beta_t^{(k)})_{t \in [0,T]}$ are independent Brownian motions

 $\rightarrow\,$ Existence and uniqueness of (weak and mild) solution if $\alpha_{\rm d}+\alpha_{\rm n}>d/2$

DIFFUSION SPDE

Let $\{e_k\}_{k\in\mathbb{N}}$ be an o.n.b. of $L^2(\mathcal{D})$ composed of eigenfunctions of $-\Delta$ with eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}}$

Consider the diffusion SPDE

$$\begin{cases} \mathrm{d}\mathcal{Z}_t + (\kappa^2 - \Delta)^{\alpha_\mathrm{d}} \ \mathcal{Z}_t \ \mathrm{d}t = \mathrm{d}\mathcal{B}_t^Q \\ \mathcal{Z}_0 = z_0 \in L^2(\mathcal{D}) \end{cases} \quad \text{with } \mathcal{B}_t^Q = \sum_{k \in \mathbb{N}} (\kappa^2 + \lambda_k)^{-\alpha_\mathrm{n}/2} \beta_t^{(k)} e_k^Q, \quad t \in [0, T] \end{cases}$$

• Spectral decomposition of the SPDE solution:

$$\mathfrak{Z}_t = \sum_{k \in \mathbb{N}} Z_t^{(k)} e_k$$

where for each k, $Z^{(k)}$ satisfies a SDE

$$\begin{cases} \mathrm{d}Z_t^{(k)} + (\kappa^2 + \lambda_k)^{\alpha_\mathrm{d}} \ Z_t^{(k)} \ \mathrm{d}t = (\kappa^2 + \lambda_k)^{-\alpha_\mathrm{n}/2} \mathrm{d}\beta_t^{(k)}, \quad t \in (0,T] \\ Z_0^{(k)} = \langle z_0, e_k \rangle \end{cases}$$

 \rightarrow Independent Ornstein-Uhlenbeck process

$$dZ_t^{(k)} = -\theta_k \ Z_t^{(k)} \ dt + \tau_k \ d\beta_t^{(k)}, \quad t \in (0, T]$$

DIFFUSION SPDE

• Spectral decomposition of the SPDE solution:

$$\mathcal{Z}_t = \sum_{k \in \mathbb{N}} Z_t^{(k)} e_k, \quad t \in (0, T]$$

where for each k, $\theta_k = (\kappa^2 + \lambda_k)^{\alpha_d}$, $\tau_k = (\kappa^2 + \lambda_k)^{-\alpha_n/2}$ and

$$\mathrm{d}Z_t^{(k)} = -\theta_k \ Z_t^{(k)} \ \mathrm{d}t + \tau_k \ \mathrm{d}\beta_t^{(k)}$$

• Explicit dynamic for the coeffcients $Z_t^{(k)} o$ Gaussian + Markov process

$$(Z_{t+\delta t}^{(k)}|Z_t^{(k)}=z) \sim \mathcal{N}\left(e^{-\theta_k \delta t}z, \frac{\tau_k^2}{2\theta_k}(1-e^{-2\theta_k \delta t})\right) \quad (\delta t>0)$$

Covariance of the (unconditionned) process

$$\operatorname{Cov}(Z_{t+\delta t}^{(k)}, Z_t^{(k)}) = \frac{\tau_k^2}{2\theta_k} e^{-\theta_k \delta t} \quad (\delta t > 0)$$

- Method 1 : Spectral Approach
 - 1. Pick a truncation order ${\cal N}$
 - 2. Simulate the OH processes $Z^{(1)}, \ldots, Z^{(N)}$ for $t \in (0,T]$
 - 3. Return $\mathcal{Z}_t = \sum_{k=1}^N Z_t^{(k)} e_k$, $t \in (0,T]$
 - \rightarrow Need to know the eigendecomposition of $-\Delta....$

- Method 2 : Euler+FEM (Clarotto et al., 2022)
 - 1. Time-discretization using (Implict) Euler

$$\mathcal{Z}_{t+\delta t} - \mathcal{Z}_t + (\kappa^2 - \Delta)^{\alpha_{\mathrm{d}}} \mathcal{Z}_{t+\delta t} \delta t = \int_t^{t+\delta t} \mathrm{d}\mathcal{B}_s^Q = \sqrt{\delta t} \mathcal{W}_s^Q$$

GEOLEARNING

SOLVING THE DIFFUSION SPDE

- Method 2 : Euler+FEM (Clarotto et al., 2022)
 - 1. Time-discretization using (Implict) Euler

$$\mathcal{Z}_{t+\delta t} - \mathcal{Z}_t + (\kappa^2 - \Delta)^{\alpha_d} \mathcal{Z}_{t+\delta t} \delta t = \int_t^{t+\delta t} \mathrm{d}\mathcal{B}_s^Q = \sqrt{\delta t} \mathcal{W}_S^Q$$

2. Space disctretization using FEM (Galerkin) to deduce that, with $\widehat{\mathcal{Z}}_t = \sum_{i=1}^{N_h} [z^{(t)}]_i \psi_i$,

$$\big(\boldsymbol{I} + \delta t (\kappa^2 \boldsymbol{I} + \widetilde{\boldsymbol{R}})^{\alpha_{\rm d}} \big) \boldsymbol{C}^{1/2} \boldsymbol{z}^{(t+\delta t)} = \boldsymbol{C}^{1/2} \boldsymbol{z}^{(t)} + \sqrt{\delta t} \boldsymbol{C}^{1/2} (\kappa^2 \boldsymbol{I} + \widetilde{\boldsymbol{R}})^{-\alpha_{\rm n}/2} \boldsymbol{w}$$

where $w \sim \mathcal{N}(0, I)$, and C (diagonal mass lumped matrix), R (stiffness matrix) and $\widetilde{R} = C^{-1/2} R C^{-1/2}$ are sparse matrices

 \rightarrow Explicit expression for precision matrix of solution!

Method 3 : Discrete spectral approach

1. Formulate the spectral solution in the FEM space: $\widehat{\mathcal{Z}}_t = \sum_{k=1}^{N_h} \widehat{Z}_t^{(k)} E_k$ where

$$\begin{cases} \mathrm{d}\widehat{Z}_t^{(k)} + (\kappa^2 + \Lambda_k)^{\alpha_\mathrm{d}} \ \widehat{Z}_t^{(k)} \ \mathrm{d}t = (\kappa^2 + \Lambda_k)^{-\alpha_\mathrm{n}/2} \mathrm{d}\beta_t^{(k)}, \quad t \in (0,T]\\ \widehat{Z}_0^{(k)} = \langle z_0, E_k \rangle \end{cases}$$

Method 3 : Discrete spectral approach

1. Formulate the spectral solution in the FEM space: $\widehat{\mathcal{Z}}_t = \sum_{k=1}^{N_h} \widehat{Z}_t^{(k)} E_k$ where

$$\begin{cases} \mathrm{d}\widehat{Z}_t^{(k)} + (\kappa^2 + \Lambda_k)^{\alpha_\mathrm{d}} \ \widehat{Z}_t^{(k)} \ \mathrm{d}t = (\kappa^2 + \Lambda_k)^{-\alpha_\mathrm{n}/2} \mathrm{d}\beta_t^{(k)}, \quad t \in (0,T]\\ \widehat{Z}_0^{(k)} = \langle z_0, E_k \rangle\end{cases}$$

2. Use the cond. dist. of OU processes + definition of $-\Delta_h$ to deduce that for any $\delta t > 0$ $\widehat{\mathcal{I}}_{t+\delta t} = m_{\delta t}(-\Delta_h)\widehat{\mathcal{I}}_t + \sigma_{\delta t}(-\Delta_h)\widehat{\mathcal{W}},$

where $\widehat{\mathcal{W}}$ is a white noise on the FEM space and $m_{\delta t}, \sigma_{\delta t}$ are given by

$$m_{\delta t}(\lambda) = e^{-\delta t (\kappa^2 + \lambda)^{\alpha_{\mathrm{d}}}}, \quad \sigma_{\delta t}(\lambda) = (\sqrt{2})^{-1} (\kappa^2 + \lambda)^{-(\alpha_{\mathrm{d}} + \alpha_{\mathrm{n}})/2} \sqrt{1 - e^{-2(\kappa^2 + \lambda)^{\alpha_{\mathrm{d}}} \delta t}}$$

Method 3 : Discrete spectral approach

1. Formulate the spectral solution in the FEM space: $\widehat{\mathcal{Z}}_t = \sum_{k=1}^{N_h} \widehat{Z}_t^{(k)} E_k$ where

$$\begin{cases} \mathrm{d}\widehat{Z}_t^{(k)} + (\kappa^2 + \Lambda_k)^{\alpha_\mathrm{d}} \ \widehat{Z}_t^{(k)} \ \mathrm{d}t = (\kappa^2 + \Lambda_k)^{-\alpha_\mathrm{n}/2} \mathrm{d}\beta_t^{(k)}, \quad t \in (0,T] \\ \widehat{Z}_0^{(k)} = \langle z_0, E_k \rangle \end{cases}$$

2. Use the cond. dist. of OU processes + definition of $-\Delta_h$ to deduce that for any $\delta t > 0$ $\widehat{\mathcal{Z}}_{t+\delta t} = m_{\delta t}(-\Delta_h)\widehat{\mathcal{Z}}_t + \sigma_{\delta t}(-\Delta_h)\widehat{\mathcal{W}},$

where $\widehat{\mathcal{W}}$ is a white noise on the FEM space and $m_{\delta t}, \sigma_{\delta t}$ are given by

$$m_{\delta t}(\lambda) = e^{-\delta t (\kappa^2 + \lambda)^{\alpha_{\mathrm{d}}}}, \quad \sigma_{\delta t}(\lambda) = (\sqrt{2})^{-1} (\kappa^2 + \lambda)^{-(\alpha_{\mathrm{d}} + \alpha_{\mathrm{n}})/2} \sqrt{1 - e^{-2(\kappa^2 + \lambda)^{\alpha_{\mathrm{d}}} \delta t}}$$

3. Use Galerkin-Chebyshev to compute the solution

$$C^{1/2} \boldsymbol{z}^{(t+\delta t)} = m_{\delta t}(\widetilde{\boldsymbol{R}}) C^{1/2} \boldsymbol{z}^{(t)} + \sigma_{\delta t}(\widetilde{\boldsymbol{R}}) \boldsymbol{w}$$

 \rightarrow Explicit expression for precision matrix of solution!

■ COVARIANCE OF THE SOLUTION

Recall that $heta_k=(\kappa^2+\lambda_k)^{lpha_{
m d}}$, $au_k=(\kappa^2+\lambda_k)^{-lpha_{
m n}/2}$

• For
$$\phi, \varphi \in L^2(\mathcal{D})$$
, and $t, u \in \mathbb{R}$

$$\operatorname{Cov}\left(\langle \mathcal{Z}_t, \phi \rangle, \langle \mathcal{Z}_{t+u}, \varphi \rangle\right) = \sum_{k \in \mathbb{N}} \operatorname{Cov}\left(Z_t^{(k)}, Z_{t+u}^{(k)}\right) \langle e_k, \phi \rangle \langle e_k, \varphi \rangle = \sum_{k \in \mathbb{N}} \frac{\tau_k^2}{2\theta_k} e^{-\theta_k u} \langle e_k, \phi \rangle \langle e_k, \varphi \rangle$$

COVARIANCE OF THE SOLUTION

Recall that
$$heta_k=(\kappa^2+\lambda_k)^{lpha_{\rm d}}$$
, $au_k=(\kappa^2+\lambda_k)^{-lpha_{\rm n}/2}$

• For
$$\phi, \varphi \in L^2(\mathcal{D})$$
, and $t, u \in \mathbb{R}$

$$\operatorname{Cov}\left(\langle \mathcal{Z}_t, \phi \rangle, \langle \mathcal{Z}_{t+u}, \varphi \rangle\right) = \sum_{k \in \mathbb{N}} \operatorname{Cov}\left(Z_t^{(k)}, Z_{t+u}^{(k)}\right) \langle e_k, \phi \rangle \langle e_k, \varphi \rangle = \sum_{k \in \mathbb{N}} \frac{\tau_k^2}{2\theta_k} e^{-\theta_k u} \langle e_k, \phi \rangle \langle e_k, \varphi \rangle$$

• Spatial trace : u = 0

$$\operatorname{Cov}\left(\langle \mathcal{Z}_t, \phi \rangle, \langle \mathcal{Z}_t, \varphi \rangle\right) = \sum_{k \in \mathbb{N}} \frac{\tau_k^2}{2\theta_k} \langle e_k, \phi \rangle \langle e_k, \varphi \rangle = \sum_{k \in \mathbb{N}} \frac{1}{2} (\kappa^2 + \lambda_k)^{-(\alpha_d + \alpha_n)} \langle e_k, \phi \rangle \langle e_k, \varphi \rangle$$

 \to Same as the solution of the SPDE $(\kappa^2-\Delta)^{(\alpha_d+\alpha_n)/2}\mathcal{Y}=\sqrt{2}~\mathcal{W}$

COVARIANCE OF THE SOLUTION

0

Recall that
$$heta_k=(\kappa^2+\lambda_k)^{lpha_{\rm d}}$$
, $au_k=(\kappa^2+\lambda_k)^{-lpha_{\rm n}/2}$

• For
$$\phi, \varphi \in L^2(\mathcal{D})$$
, and $t, u \in \mathbb{R}$

$$\operatorname{Cov}\left(\langle \mathcal{Z}_t, \phi \rangle, \langle \mathcal{Z}_{t+u}, \varphi \rangle\right) = \sum_{k \in \mathbb{N}} \operatorname{Cov}\left(Z_t^{(k)}, Z_{t+u}^{(k)}\right) \langle e_k, \phi \rangle \langle e_k, \varphi \rangle = \sum_{k \in \mathbb{N}} \frac{\tau_k^2}{2\theta_k} e^{-\theta_k u} \langle e_k, \phi \rangle \langle e_k, \varphi \rangle$$

• Spatial trace : u = 0

$$\operatorname{Cov}(\langle \mathfrak{Z}_t, \phi \rangle, \langle \mathfrak{Z}_t, \varphi \rangle) = \sum_{k \in \mathbb{N}} \frac{\tau_k^2}{2\theta_k} \langle e_k, \phi \rangle \langle e_k, \varphi \rangle = \sum_{k \in \mathbb{N}} \frac{1}{2} (\kappa^2 + \lambda_k)^{-(\alpha_d + \alpha_n)} \langle e_k, \phi \rangle \langle e_k, \varphi \rangle$$

 \to Same as the solution of the SPDE $(\kappa^2-\Delta)^{(\alpha_d+\alpha_n)/2} \mathfrak{Y}=\sqrt{2}~\mathcal{W}$

• Temporal trace : $\phi = \varphi$

$$\operatorname{Cor}(\langle \mathcal{Z}_t, \phi \rangle, \langle \mathcal{Z}_{t+u}, \phi \rangle) = \sum_{k \in \mathbb{N}} \frac{c_k}{\sum_{l \in \mathbb{N}} c_l} e^{-\theta_k u}, \quad c_k = (\kappa^2 + \lambda_k)^{-(\alpha_d + \alpha_n)} \langle e_k, \phi \rangle^2$$

 \rightarrow Mixture of exponential correlation functions!

EXAMPLES OF SAMPLES

• Time regularity: Almost-nowhere differentiable, but paths are Hölder-continuous with order $1/2 - \varepsilon$ for any $\varepsilon \in (0, 1/2)$, i.e.

$$\mathbb{E}[|\langle \mathcal{Z}_t, \phi \rangle - \langle \mathcal{Z}_{t+u}, \phi \rangle|] \le C|u|^{1/2-\varepsilon}$$
(1)

 \rightarrow Regularity inherited from the Brownian motion! Can we do better?

I. Introduction and context

II. Spatio-temporal extension

III. Diffusion SPDE with fractional noise

■ FRACTIONAL BROWNIAN MOTION

- A fractional Brownian motion $(\beta^H_t)_{t\in[0,T]}$ with Hurst index $H\in(0,1)$ is a Gaussian process such that
 - $-~(\beta^H_t)_{t\in[0,T]}$ has (almost-surely) continuous trajectories
 - Its covariance function is given by

$$\operatorname{Cov}(\beta_t^H, \beta_s^H) = \frac{1}{2}(|t|^{2H} + |s|^{2H} - |t - s|^{2H})$$

FRACTIONAL BROWNIAN MOTION

- A fractional Brownian motion $(\beta^H_t)_{t\in[0,T]}$ with Hurst index $H\in(0,1)$ is a Gaussian process such that
 - $(\beta^H_t)_{t \in [0,T]}$ has (almost-surely) continuous trajectories
 - Its covariance function is given by

$$\operatorname{Cov}(\beta_t^H, \beta_s^H) = \frac{1}{2}(|t|^{2H} + |s|^{2H} - |t - s|^{2H})$$

- Some properties
 - $-\,$ Particular case : $H=1/2 \rightarrow$ (standard) Brownian motion
 - Associated variogram: $\mathrm{Var}(\beta^H_t-\beta^H_s)\propto |t-s|^{2H}$
 - $-\,$ Paths Hölder-continuous of order $H-\varepsilon$ for any $\varepsilon\in(0,H)$
 - Stationary increments: $\beta^{H}_{t} \beta^{H}_{s} \sim \beta^{H}_{t-s}$
 - Increments are positively correlated if H>1/2 (\rightarrow tends to continue the trends) and negatively correlated if H<1/2

FRACTIONAL BROWNIAN MOTION

- A fractional Brownian motion $(\beta^H_t)_{t\in[0,T]}$ with Hurst index $H\in(0,1)$ is a Gaussian process such that
 - $(\beta^H_t)_{t \in [0,T]}$ has (almost-surely) continuous trajectories
 - Its covariance function is given by

$$\operatorname{Cov}(\beta_t^H, \beta_s^H) = \frac{1}{2}(|t|^{2H} + |s|^{2H} - |t - s|^{2H})$$

- Note: if $H \neq 1/2$, the increments are not independent \rightarrow Non Markovian process (with long-range dependence for H > 1/2)
- Remark: Fractional Brownian motion can also be seen as an integrated (standard) Brownian motion
- (Fractional) Itô calculus and (fractional) *Q*-Wiener processes are well-defined for fractional Brownian motions

FRACTIONAL DIFFUSION SPDE

Let $\{e_k\}_{k\in\mathbb{N}}$ be an o.n.b. of $L^2(\mathcal{D})$ composed of eigenfunctions of $-\Delta$ with eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}}$

Consider the diffusion SPDE

$$\begin{cases} \mathrm{d}\mathcal{Z}_t + (\kappa^2 - \Delta)^{\alpha_\mathrm{d}} \ \mathcal{Z}_t \ \mathrm{d}t = \mathrm{d}\mathcal{B}_t^{H,Q} \\ \mathcal{Z}_0 = z_0 \in L^2(\mathcal{D}) \end{cases} \quad \text{with } \mathcal{B}_t^{H,Q} = \sum_{k \in \mathbb{N}} (\kappa^2 + \lambda_k)^{-\alpha_\mathrm{n}/2} \beta_t^{(H,k)} e_k^Q, \quad t \in [0,T] \end{cases}$$

where $(\beta_t^{(H,k)})_{t \in [0,T]}$ are independent fractional Brownian motions

FRACTIONAL DIFFUSION SPDE

Let $\{e_k\}_{k\in\mathbb{N}}$ be an o.n.b. of $L^2(\mathcal{D})$ composed of eigenfunctions of $-\Delta$ with eigenvalues $\{\lambda_k\}_{k\in\mathbb{N}}$

Consider the diffusion SPDE

 $\begin{cases} \mathrm{d}\mathcal{Z}_t + (\kappa^2 - \Delta)^{\alpha_\mathrm{d}} \ \mathcal{Z}_t \ \mathrm{d}t = \mathrm{d}\mathcal{B}_t^{H,Q} \\ \mathcal{Z}_0 = z_0 \in L^2(\mathcal{D}) \end{cases} \quad \text{with } \mathcal{B}_t^{H,Q} = \sum_{k \in \mathbb{N}} (\kappa^2 + \lambda_k)^{-\alpha_\mathrm{n}/2} \beta_t^{(H,k)} e_k^Q, \quad t \in [0,T] \\ \text{where } (\beta_t^{(H,k)})_{t \in [0,T]} \text{ are independent fractional Brownian motions} \end{cases}$

• Spectral decomposition of the SPDE solution:

$$\mathcal{Z}_t = \sum_{k \in \mathbb{N}} Z_t^{(k)} e_k \quad \text{with } \begin{cases} \mathrm{d} Z_t^{(k)} + (\kappa^2 + \lambda_k)^{\alpha_\mathrm{d}} \ Z_t^{(k)} \ \mathrm{d} t = (\kappa^2 + \lambda_k)^{-\alpha_\mathrm{n}/2} \mathrm{d} \beta_t^{(H,k)}, \quad t \in (0,T] \\ Z_0^{(k)} = \langle z_0, e_k \rangle \end{cases}$$

 \rightarrow Independent Fractional Ornstein-Uhlenbeck process

$$dZ_t^{(k)} = -\theta_k \ Z_t^{(k)} \ dt + \tau_k \ d\beta_t^{(H,k)}, \quad t \in (0,T]$$

■ COVARIANCE OF THE STATIONARY SOLUTION

Recall that $heta_k=(\kappa^2+\lambda_k)^{lpha_{\rm d}}$, $au_k=(\kappa^2+\lambda_k)^{-lpha_{\rm n}/2}$

• For
$$\phi, \varphi \in L^2(\mathcal{D})$$
, and $t, u \in \mathbb{R}$

$$\operatorname{Cov}\left(\langle \mathcal{Z}_t, \phi \rangle, \langle \mathcal{Z}_{t+u}, \varphi \rangle\right) = \sum_{k \in \mathbb{N}} C_k(u) \langle e_k, \phi \rangle \langle e_k, \varphi \rangle$$

where $C_k(u) = \operatorname{Cov}\left(Z_t^{(k)}, Z_{t+u}^{(k)}\right) = \frac{\Gamma(2H+1)\sin(\pi H)}{\pi} \frac{\tau_k^2}{2\theta_k^{2H}} \int_{-\infty}^{\infty} e^{ix(u/\theta_k)} \frac{|x|^{1-2H}}{1+x^2} \mathrm{d}x$

■ COVARIANCE OF THE STATIONARY SOLUTION

Recall that
$$\theta_k = (\kappa^2 + \lambda_k)^{\alpha_d}$$
, $\tau_k = (\kappa^2 + \lambda_k)^{-\alpha_n/2}$
• For $\phi, \varphi \in L^2(\mathcal{D})$, and $t, u \in \mathbb{R}$
 $\operatorname{Cov}(\langle \mathcal{Z}_t, \phi \rangle, \langle \mathcal{Z}_{t+u}, \varphi \rangle) = \sum_{k \in \mathbb{N}} C_k(u) \langle e_k, \phi \rangle \langle e_k, \varphi \rangle$
where $C_k(u) = \operatorname{Cov}(Z_t^{(k)}, Z_{t+u}^{(k)}) = \frac{\Gamma(2H+1)\sin(\pi H)}{\pi} \frac{\tau_k^2}{2\theta_k^{2H}} \int_{-\infty}^{\infty} e^{ix(u/\theta_k)} \frac{|x|^{1-2H}}{1+x^2} dx$

• Spatial trace : u = 0

$$\operatorname{Cov}(\langle \mathcal{Z}_t, \phi \rangle, \langle \mathcal{Z}_t, \varphi \rangle) \propto \sum_{k \in \mathbb{N}} \frac{\tau_k^2}{2\theta_k^{2H}} \langle e_k, \phi \rangle \langle e_k, \varphi \rangle$$

 \to Same as the solution of the SPDE $(\kappa^2-\Delta)^{(2H\alpha_{\rm d}+\alpha_{\rm n})/2} {\mathfrak Y}=\sqrt{2}~{\mathfrak W}$

• Temporal trace : $\phi = \varphi$

$$\operatorname{Cor}\left(\langle \mathcal{Z}_t, \phi \rangle, \langle \mathcal{Z}_{t+u}, \phi \rangle\right) = \sum_{k \in \mathbb{N}} \frac{c_k}{\sum_{l \in \mathbb{N}} c_l} \int_{-\infty}^{\infty} e^{ix(u/\theta_k)} \frac{|x|^{1-2H}}{1+x^2} \mathrm{d}x, \quad c_k = \frac{\tau_k^2}{2\theta_k^{2H}} \langle e_k, \phi \rangle^2$$

COVARIANCE OF THE STATIONARY SOLUTION

Recall that $heta_k = (\kappa^2 + \lambda_k)^{lpha_{
m d}}$, $au_k = (\kappa^2 + \lambda_k)^{-lpha_{
m n}/2}$

• Temporal trace : $\phi = \varphi$

COMPUTING THE SOLUTION

- Remark: The noise increments are now time-correlated
- Method : Discrete spectral + Implicit Euler time-stepping
 - 1. Formulate the spectral solution in the FEM space: $\widehat{\mathcal{Z}}_t = \sum_{k=1}^{N_h} \widehat{Z}_t^{(k)} E_k$ where

$$\begin{split} \widehat{\mathcal{Z}}_t &= \sum_{k=1}^{N_h} \widehat{Z}_t^{(k)} E_k \quad \text{where } \begin{cases} \mathrm{d}\widehat{Z}_t^{(k)} + (\kappa^2 + \Lambda_k)^{\alpha_\mathrm{d}} \ \widehat{Z}_t^{(k)} \ \mathrm{d}t = (\kappa^2 + \Lambda_k)^{-\alpha_\mathrm{n}/2} \mathrm{d}\beta_t^{(k,H)} \\ \widehat{Z}_0^{(k)} &= \langle z_0, E_k \rangle \end{split}$$

COMPUTING THE SOLUTION

- Remark: The noise increments are now time-correlated
- Method : Discrete spectral + Implicit Euler time-stepping
 - 1. Formulate the spectral solution in the FEM space: $\widehat{\mathcal{Z}}_t = \sum_{k=1}^{\bar{N}_h} \widehat{Z}_t^{(k)} E_k$ where

$$\widehat{\mathcal{Z}}_t = \sum_{k=1}^{N_h} \widehat{Z}_t^{(k)} E_k \quad \text{where } \begin{cases} \mathrm{d}\widehat{Z}_t^{(k)} + (\kappa^2 + \Lambda_k)^{\alpha_\mathrm{d}} \ \widehat{Z}_t^{(k)} \ \mathrm{d}t = (\kappa^2 + \Lambda_k)^{-\alpha_\mathrm{n}/2} \mathrm{d}\beta_t^{(k,H)} \\ \widehat{Z}_0^{(k)} = \langle z_0, E_k \rangle \end{cases}$$

2. Generate independent fBm trajectories $\beta_t^{(h)} = (\beta_t^{(1,H)}, \dots, \beta_t^{(N_h,H)})$ over [0,T]

COMPUTING THE SOLUTION

- Remark: The noise increments are now time-correlated
- Method : Discrete spectral + Implicit Euler time-stepping
 - 1. Formulate the spectral solution in the FEM space: $\widehat{\mathcal{Z}}_t = \sum_{k=1}^{N_h} \widehat{Z}_t^{(k)} E_k$ where

$$\widehat{\mathcal{Z}}_t = \sum_{k=1}^{N_h} \widehat{Z}_t^{(k)} E_k \quad \text{where } \begin{cases} \mathrm{d}\widehat{Z}_t^{(k)} + (\kappa^2 + \Lambda_k)^{\alpha_\mathrm{d}} \ \widehat{Z}_t^{(k)} \ \mathrm{d}t = (\kappa^2 + \Lambda_k)^{-\alpha_\mathrm{n}/2} \mathrm{d}\beta_t^{(k,H)} \\ \widehat{Z}_0^{(k)} = \langle z_0, E_k \rangle \end{cases}$$

- 2. Generate independent fBm trajectories $\beta_t^{(h)} = (\beta_t^{(1,H)}, \dots, \beta_t^{(N_h,H)})$ over [0,T]
- 3. Use Implicit time step on SDEs + Change of basis to deduce that, with $\widehat{\mathcal{Z}}_t = \sum_{i=1}^{N_h} [z^{(t)}]_i \psi_i$,

where
$$\left(\boldsymbol{I} + \delta t (\kappa^2 \boldsymbol{I} + \widetilde{\boldsymbol{R}})^{\alpha_{\rm d}} \right) \boldsymbol{C}^{1/2} \boldsymbol{z}^{(t+\delta t)} = \boldsymbol{C}^{1/2} \boldsymbol{z}^{(t)} + \sqrt{\delta t} \boldsymbol{C}^{1/2} (\kappa^2 \boldsymbol{I} + \widetilde{\boldsymbol{R}})^{-\alpha_{\rm n}/2} \left(\boldsymbol{\beta}_{t+\delta t}^{(h)} - \boldsymbol{\beta}_{t}^{(h)} \right)$$

 \rightarrow Explicit expression for precision matrix of solution with Kronecker products!

EXAMPLES OF SAMPLES

H=0.5

EXAMPLES OF SAMPLES

H=0.5

OUTLOOKS

- Stochastic analysis of numerical scheme (ongoing)
- Link to fractional operators
- Going further: What if we replaced the fBm with even smoother processes?

Matern process instead of fBm

REFERENCES

- Clarotto, L., Allard, D., Romary, T., and Desassis, N. (2022). The spde approach for spatio-temporal datasets with advection and diffusion. *arXiv preprint arXiv:2208.14015*.
- Emery, X. and Porcu, E. (2019). Simulating isotropic vector-valued gaussian random fields on the sphere through finite harmonics approximations. *Stochastic Environmental Research and Risk Assessment*.
- Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. *Journal of Computational and Graphical Statistics*, 15(3):502–523.
- Gneiting, T. (2002). Compactly supported correlation functions. *Journal of Multivariate Analysis*, 83(2):493–508.
- Higdon, D., Swall, J., and Kern, J. (1999). Non-stationary spatial modeling. *Bayesian statistics*, 6(1):761–768.
- Lang, A. and Pereira, M. (2023). Galerkin-chebyshev approximation of gaussian random fields on compact riemannian manifolds. *BIT Numerical Mathematics*, 63(4):51.

REFERENCES

- Lang, A., Schwab, C., et al. (2015). Isotropic gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations. *The Annals of Applied Probability*, 25(6):3047–3094.
- Lantuéjoul, C., Freulon, X., and Renard, D. (2019). Spectral simulation of isotropic gaussian random fields on a sphere. *Mathematical Geosciences*.
- Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between gaussian fields 670 and gaussian markov random fields: the spde approach (with discussion). *JR 671 Stat Soc, Series B*, 73:423–498.
- Lindgren, G. (2012). *Stationary stochastic processes: theory and applications*. Chapman and Hall/CRC.
- Marinucci, D. and Peccati, G. (2011). Random fields on the sphere: representation, limit theorems and cosmological applications, volume 389. Cambridge University Press.
- Pereira, M. (2019). *Generalized random fields on Riemannian manifolds: theory and practice*. PhD thesis, Université Paris sciences et lettres.

REFERENCES

- Rozanov, J. A. (1977). Markov random fields and stochastic partial differential equations. *Mathematics of the USSR-Sbornik*, 32(4):515.
- Rue, H. and Held, L. (2005). *Gaussian Markov random fields: theory and applications*. Chapman and Hall/CRC.
- Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. *Journal of the American Statistical Association*, 87(417):108–119.
- Whittle, P. (1954). On stationary processes in the plane. Biometrika, pages 434-449.