MULTIVARIATE MODELING OF LOW, MODERATE, AND LARGE POSITIVE VALUES

WITHOUT THRESHOLD SELECTION STEPS

Carlo Gaetan,

Università Ca' Foscari di Venezia, Italy

gaetan@unive.it

SÉMINAIRE GEOLEARNING, Fréjus, 31/02/2025 - 03/04/2025

Joint work with

- ▶ Pierre Ailliot (UBO, France)
- ▶ Philippe Naveau (LSCE, France)

GENERALIZED PARETO DISTRIBUTION (GPD)

The distribution of X, when X exceeds a high threshold u, can be approximated by a GPD

$$H_{\xi}((x-u)/\sigma) = \begin{cases} 1 - (1 + \xi(x-u)/\sigma)_{+}^{-1/\xi} & \text{for } \xi \neq 0\\ 1 - \exp(-(x-u)/\sigma) & \text{for } \xi = 0 \end{cases}$$

 ξ shape parameter, $\sigma > 0$ scale parameter and $a_+ = \max(a, 0)$.

Motivating example

EXAMPLE: WEEKLY MAXIMUM SUMMER RIVER DISCHARGES OF WYE RIVER

Map of UK river 60°N 58°N Latitude ٥N 54°N 52°N 50°N 8°W 6°W 4°W 2°W 0° 2°E Longitude

RIVER DISCHARGES

- ▶ Flood risk managers often focus on the analysis of high river flows
- Farmers may be interested in periods of low river runoffs to prevent food production shortages
- Energy producers in charge of electrical dams can be concerned by the full range of the variable of interest

RIVER DISCHARGES: DEPENDENCE

Sites along the same river basin as nearby measurements can be strongly dependent

Erwood

Naveau, P., Huser, R., Ribereau, P., & Hannard, A. (2016). Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. Water Resources Research, 52(4), 2753-2769.

TWO STRATEGIES TO MODEL JOINTLY EXTREMES AND BULK

THE THREE INGREDIENTS FOR A EGPD

Low extremes

 $1/\kappa$ the GPD parameter of 1/X

Bulk

B a CDF on [0, 1] with a pdf *b*

High extremes

 ξ , the GPD parameter of X

 $\Pr(X \leq x) = B(H_{\xi}(x)^{\kappa})$

where the pdf b(u) is such that

 $0 < b(0) < \infty, 0 < b(1) < \infty$

EGPD EXAMPLES

A multivariate EGPD

POLAR EXTREMES COORDINATES

pseudo-radius $\|\mathbf{X}\| = X_1 + X_2$ and pseudo-angle $\mathbf{U} = (X_1 / \|\mathbf{X}\|, X_2 / \|\mathbf{X}\|)$

 $\mathbf{X} = ||\mathbf{X}|| \times \mathbf{U}$

distribution of $\| \pmb{X} \|$ and $1 / \| \pmb{X} \|$

Let $X_i \sim \text{EGPD}(\kappa, \xi, B)$ for all $i = 1, \ldots, d$.

If there exist three positive and finite constants, a, c_0 and c_1 such that

x-

$$\lim_{N \to \infty} \frac{\Pr(\|\mathbf{X}\| > x)}{\Pr(X_i > x)} = c_1 \tag{1}$$

and

$$\lim_{s\to 0^+} \frac{\Pr(\|\mathbf{X}\| \le x)}{[\Pr(X_i \le x)]^a} = c_0,$$
(2)

then there exists a CDF B_d such that $\|\mathbf{X}\| \sim \text{EGPD}(\kappa, \xi, B_d)$ with

 $b_d(0) = c_0 b(0)^a$ and $b_d(1) = c_1 b(1)/a$.

Moreover $1/||\boldsymbol{X}||$ is also EGPD $(1/\xi, 1/\kappa, \tilde{B}_d)$

Upper extreme's representation

Lower extreme's representation

Radius $||X|| = X_1 + X_2$ and $U = \frac{X}{||X||}$

MULTIVARIATE REGULAR VARIATION DISTRIBUTION

 $\mathbf{X} = ||\mathbf{X}|| \times \mathbf{U}$

- ▶ **||X**|| independent of **U** when **||X**|| gets large
- ▶ $Pr(U \in A \mid ||X|| > r)$ has a non-degenerate limit as $r \to \infty$, i.e.

 $\lim_{r \to \infty} \Pr(\boldsymbol{U} \in A \mid \|\boldsymbol{X}\| > r) = \Pr(\boldsymbol{U} \in A)$

The three main differences with classical EVT modelling are that

- 1. our interest is not only on the upper extremal behaviour of **X**, but also its lower extremal behaviour;
- 2. the radial component is assumed to follow a EGPD, and consequently be in compliance with EVT for both small and large values of **||X|**;
- in contrast to classical regular variation principles, the radial component is not necessarily assumed independent of the angular component. In particular, the degree of dependence will change according to the value ||X||.

BIVARIATE EGPD WITH FOUR INGREDIENTS

 κ_d the GPD parameter of $1/\|m{X}\|$

Bulk B_d a CDF function on [0, 1] (with PDF b_d)

$$\|\boldsymbol{X}\| \sim EGPD(\kappa, \xi, B), \qquad \boldsymbol{U} = \boldsymbol{X}/\|\boldsymbol{X}\|$$

Bivariate conditional model

$$\left[\log\left(\frac{U_1}{1-U_1}\right)\Big|\|\boldsymbol{X}\|=r\right]\stackrel{d}{=}\delta(r)Z$$

with Z standard normal $\perp \|\mathbf{X}\|$

High extremes

 ξ the GPD parameter of $\|\boldsymbol{X}\|$

INTERPRETATION

Bivariate conditional model

$$\left[\log\left(\frac{U_1}{1-U_1}\right)\Big|\|\boldsymbol{X}\|=r\right] \stackrel{d}{=} \delta(r)Z$$

with Z standard normal $\perp \|\mathbf{X}\|$

- **I** f $\delta(R)$ remains constant for large values of *R*, then we are in the multivariate regular variation framework
- ▶ We can specify other conditional distribution

$$U_1|||\boldsymbol{X}|| = r \sim f(\cdot; \delta(r))$$

under the constraint $\mathbb{E}(U_1|||\mathbf{X}|| = r) = 1/2$

▶ Why Gaussian model? Flexible multivariate distribution that is easy to specify and estimate!

FLEXIBILITY (I)

FLEXIBILITY (II)

Does this work in practice?

ESTIMATION IN TWO STEPS: FIRST STEP

Transform $\mathbf{x}_i = (x_{i,1}, x_{i,2})^T$ into $r_i = ||\mathbf{x}_i||$ and $v_i = \log(x_{i,1}) - \log(x_{i,2})$

1. Maximize the EGPD log-likelihood

$$l_{R}(\kappa, \xi) = \sum_{i=1}^{n} \left\{ \log \kappa + (\kappa - 1) \log H_{\xi}(r_{i}) + \log h_{\xi}(r_{i}) + \log \widehat{b}(H_{\xi}(r_{i})^{\kappa}) \right\}.$$

Density b(u) is approximated with Bernstein polynomials

$$\widehat{b}(u) = \sum_{k=1}^m \omega_{k,m} \beta_{k,m-k+1}(u)$$

with $\beta_{i,j}(u) = {j \choose i} u^i (1-u)^{j-i}$.

Ad-hoc R program but simple to write!

```
evd::dgpd(x = x,loc = 0,scale = 1,shape = xi)
evd::pgpd(x = x,loc = 0,scale = 1,shape = xi)
ecdf(u)
dbeta(u,shape1 = i, shape2 = j-i+1)
```

ESTIMATION IN TWO STEPS: SECOND STEP

2. Maximize the penalized Gaussian log-likelihood

$$PL_{V}(\boldsymbol{\gamma}) = -\sum_{i=1}^{n} \left\{ \log(\delta(r_{i})) + 0.5 \left(\frac{v_{i}}{\delta(r_{i})}\right)^{2} \right\} + \lambda \boldsymbol{\gamma}^{\top} \boldsymbol{P} \boldsymbol{\gamma}.$$

▶ Linear combination of *K* basis functions (cubic splines)

$$\log \delta(r) = \gamma_0 + \sum_{j=1}^{K} \gamma_j S_j(r), \qquad \gamma = (\gamma_0, \ldots, \gamma_K)^\top$$

- \triangleright $\lambda > 0$ smoothing parameter and **P** is a positive semi-definite matrix.
- ▶ R code

mgcv::gam(list(v~1,~s(r),method = "REML",family=gaulss())

Can we approximate common copula models?

MRV: SYMMETRIC LOGISTIC COPULA

NO MRV: GAUSSIAN COPULA

Coming back to the motivating example ...

RIVER DISCHARGES: DISTRIBUTION OF $\mathbf{X} = (X_1, X_2)^T$

RIVER DISCHARGES: DISTRIBUTION OF $X_2|X_1|$

Sum of dependent EGPD are still EGPD and multivariate EGPD exists

FUTURE WORKS

- $> X_1 + \ldots + X_d \sim EGPD(\kappa, \xi, B_d)$
- ▶ Duration *d*
- ▶ Intensity Duration Frequency (IDF) curve

- ▶ Rainfall measurement are discrete ...
- …and most of the time, it is not raining, i.e. zero inflation !

LAST SLIDE

Thanks !!! Merci !!!