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1. Regular variation of stationary time series

2

(Xt) is regularly varying with index α > 0 if

1. |X| is regularly varying with index α: P(|X| > x) = x−αL(x).

2. There exists (Θt)t≥0 independent of a Pareto(α) random
variablea Yα such that for every h ≥ 0 as x→∞,

P
(
x−1(X0, . . . , Xh) ∈ ·

∣∣ |X0| > x
) w→ P

(
Yα (Θ0, . . . ,Θh) ∈ ·

)
.

aPareto(α): P(Yα > x) = x−α, x > 0

2Davis, Hsing (AoS 1995), Basrak, Hsing (SPA 2009)
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2. There exists (Θt)t≥0 independent of a Pareto(α) random
variable Yα such that for every h ≥ 0 as x→∞,

P
(
x−1(X0, . . . , Xh) ∈ ·

∣∣ |X0| > x
) w→ P

(
Yα (Θ0, . . . ,Θh) ∈ ·

)
.

• (Θt) is the spectral tail process of (Xt).

• It describes the propagation of large values at zero into the

future.

• Extremal phenomena in a time series can be described in terms

of the spectral tail process.
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Figure 1. Top. Realization of a stationary AR(1) process Xt = 0.8Xt−1 + Zt with iid Student(5)
noise (Zt). This stationary process is regularly varying with index α = 5. The value X12 exceeds
the 95%-quantile, triggering the lagged spectral tail process 0.8t−12, t ≥ 12 (blue) while X38 falls
below the 5%-quantile, triggering the lagged spectral tail process −0.8t−38, t ≥ 38 (red).
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• For non-negative Xt: consider the maxima

Mn = max(X1, . . . , Xn) and the (1− 1/n)-quantiles an of X.
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• For non-negative Xt: consider the maxima

Mn = max(X1, . . . , Xn) and the (1− 1/n)-quantiles an of X.

•Under mixing and anti-clustering conditions there exists

θX ∈ (0, 1] such that as n→∞,3

P
(
a−1
n Mn ≤ x

)
→ ΦθX

α (x) = exp(−θX x−α) , x > 0 .

3Φα is the Fréchet distribution function.
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• For non-negative Xt: consider the maxima

Mn = max(X1, . . . , Xn) and the (1− 1/n)-quantiles an of X.

•Under mixing and anti-clustering conditions there exists

θX ∈ (0, 1] such that

P
(
a−1
n Mn ≤ x

)
→ ΦθX

α (x) = exp(−θX x−α) , x > 0 .

• θX is the extremal index of (Xt).

• It is interpreted as the reciprocal of the expected extremal

cluster size above high thresholds.

• The extremal index can be expressed in terms of the spectral

tail process: for non-negative Xt,

θX = E
[(

1− sup
t≥1

Θα
t

)
+

]
.
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2. Examples of regularly varying time series

•AR(1) process: Xt = ϕXt−1 + Zt, (Zt) iid regularly varying

with index α > 0, |ϕ| < 1. Then (Xt) is regularly varying with

index α and

Θt = Θ0ϕ
t , t ≥ 0 .

•Affine stochastic recurrence equation:4 Xt = AtXt−1 +Bt,

(At, Bt), t ∈ Z, iid, and the equation E[|A|α] = 1 has a positive

solution OR (Bt) is regularly varying with index α and

E[|A|α] < 1. Then (Xt) is regularly varying with index α > 0

and

Θt = Θ0A1 · · ·At , t ≥ 0 .
4Kesten (1973), Goldie (1991), Grincevičius (1985)
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• Stochastic volatility model: Xt = σtZt, (σt) positive stationary,

independent of an iid regularly varying sequence (Zt) with

index α. If E[σα+δ] <∞ for some δ > 0, (Xt) is regularly

varying with index α and Θt = 0, t 6= 0.

Asymptotic independence

•GARCH(1, 1) process:5 Xt = σtZt, (Zt) iid, E[Z] = 0,

E[Z2] = 1,

σ2
t = α0 + α1X

2
t−1 + β1 σ

2
t−1 = α0 + (α1Z

2
t−1 + β1)σ

2
t−1 .

(σ2
t ) satisfies an affine stochastic recurrence equation.

It is regularly varying with index α/2 if E[(α1Z
2
0 + β1)

α/2] = 1

and (Xt) inherits regular variation with index α.
5Engle (1982), Bollerslev (1985)
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Figure 2. Distinct realisations of a standardized spectral tail process of a so-
lution of a SRE.
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3. Joint convergence of maxima and sums

•Consider an iid regularly varying sequence (Xt) with index

α ∈ (0, 2), i.e., for a generic element X, as x→∞

P(|X| > x) =
L(x)

xα
,

P(±X > x)

P(|X| > x)
→ p± = P(Θ0 = ±1) .
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•Consider an iid regularly varying sequence (Xt) with index

α ∈ (0, 2), i.e., for a generic element X,

P(|X| > x) = x−αL(x) ,
P(±X > x)

P(|X| > x)
→ p± , x→∞ .

• In this case, maxima Mn = max(X1, . . . , Xn) and sums

Sn = X1 + · · ·+Xn converge jointly:

a−1
n (Mn, Sn − bn) := a−1

n (ξα, ηα) , n→∞ .

• ξα has a Fréchet Φα-distribution, ηα is α-stable.

• ξα and ηα are dependent.

• This is in stark contrast to the finite variance case α > 2 where

Mn and Sn require different normalizations an and
√
n,

respectively, and the limit components are independent.
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4. Self-normalized sums

• In the iid case, sums normalized by maxima converge for

α ∈ (0, 2):

Sn − bn
Mn

d→
ξα

ηα
, n→∞ .

•Goals of self-normalizations:

1. Avoid knowledge of the quantile normalization an.

2. Numerator ξα and denominator ηa are dependent. The

ratio ξα/ηα might have ligther tails than ξα (it has moments of

order α− ε only).

3. There might be a ”continuous transition” from the finite to

the infinite variance case.
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•A classical result by Logan, Mallows, Rice, Shepp (1973) for studentized

sums: for α ∈ (1, 2) and p > α

Sn − bn
γn,p

d→ Rα,p :=
ξα

ηα,p
, n→∞ ,

where

γn,p =
( n∑
t=1

|Xt|p
)1/p

,

• ξα is α-stable,

• ηpα,p is α/p-stable,

• ξα and ηα,p are dependent,

• The limit ratio Rα,p has density whose tails are asymptotically

equivalent to those of the Gaussian density.
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fR(x) in the symmetric iid case
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Figure 3. Left. Densities fRXα,2
of the studentized sums for iid symmetric X

for various α ∈ (1, 2). Right. Tail behavior of fRXα,2
.
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5. Self-normalizations for regularly varying stationary time

series

•Under (weak) mixing and anti-clustering conditions the limits

a−1
n (Sn − bn,Mn, γn,p)

d→ (ξα, ηα, ηα,p)

exist for p > α, α ∈ (0, 2) and the limiting quantities can be

expressed in terms of the spectral tail process.

•Hence

Sn − bn
Mn

d→
ξα

ηα
,

Sn − bn
γn,p

d→
ξα

ηα,p
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The good news

• The limit ratios of self-normalized sums have the same

distribution as in the iid case (modulo a change of scale)
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The good news

• The limit ratios of self-normalized sums have the same

distribution as in the iid case (modulo a change of scale)

• IF and ONLY IF the spectral tail process Θt, t 6= 0, is

deterministic.

• Examples.

1. Linear processes driven by iid regularly varying noise

2. Regularly varying stochastic volatility models

3. Models with Θt = 0, t 6= 0.
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The bad news

• If Θt is random for some t 6= 0 then the limit ratios of

self-normalized sums have a very complicated random

structure.

• In some cases one can show that all moments of the limit ratios

are finite.

• Examples.

1. Solutions to affine stochastic recurrence equations

2. GARCH(1, 1) processes

• There exist examples where no even moment larger than 2 of

the limit ratio is finite.
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6. Self-normalized quantities can fool you

•Assume (Xt) regularly varying stationary with index α, p > α.

Then

Rn(p) =
M (p)

n

S
(p)
n

=
max1≤t≤n |Xi|p

|X1|p + · · ·+ |Xn|p
d→ R(p) ≤ 1 a.s.

while Rn(p)
a.s.→ 0 for p < α.

• For an AR(1) process Xt = ϕXt−1 + Zt, |ϕ| < 1, with iid

regularly varying (Zi) with index α, R(p) ≤ 1− |ϕ|p a.s.
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Figure 4. Left. Plots of the ratio statistics Rn(p) for an iid Pareto(2)-distributed (Xt) with tail

P(Xt > x) = x−2, x > 1, hence Rn(p)
a.s.→ 0 as n → ∞ if and only if p < 2. Right. Plots

of the ratio statistics Rn(p) for a regularly varying AR(1) process Xt = 0.8Xt−1 + Zt with iid
Pareto(2)-distributed noise (Zt), hence E[|X|p] = ∞ for p ≥ 2. For p > 2 the support of the
limiting random variable R(p) is bounded by 1 − 0.8p. The stippled lines indicate this value for

p = 3 and p = 6. One gets the wrong impression that Rn(3)
a.s.→ 0 as n→∞.
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7. The extremogram as an alternative to the auto-correlation

function
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Figure 5. S&P 500 daily return series, 1 May, 2015 – 8 May, 2020. The
straight lines indicate the empirical q- and (1 − q)-quantiles of the data
for q = 0.01, 0.025, 0.05.
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Figure 6. Left. QQ-plot of the S&P 500 daily closing log-returns against the
Student(2) distribution. Right. Mean Excess Plot of the absolute values:
EF [|X| − u | |X| > u], u > 0.
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Figure 7. Top: S&P 500 daily opening (left) and closing (right) log-returns.
Bottom: Scatterplot closing against opening. Circles indicate 80, 90, 95,
97, 98, 99, 99.5% quantiles of the distances from 0.
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Measures of serial dependence in a time series
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• The extremogram of a stationary sequence (Xt):

lim
x→∞

P
(
Xh > x | X0 > x) = ρX(h) , h ≥ 0 .

• The cross-extremogram of (Xt) given Y0:

lim
x→∞

P
(
Xh > x | Y0 > x) = ρX|Y (h) , h ≥ 0 .

• The extremogram is approximated by the auto-correlations of

the stationary sequence (1(Xt > xn)) for high quantile xn.
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• The extremogram of a stationary sequence (Xt):

lim
x→∞

P
(
Xh > x | X0 > x) = ρX(h) , h ≥ 0 .

• The cross-extremogram of (Xt) given (Yt):

lim
x→∞

P
(
Xh > x | Y0 > x) = ρX|Y (h) , h ≥ 0 .

• The extremogram is approximated by the auto-correlations of

the stationary sequence (1(Xt > xn)) for high quantile xn.

• The extremogram is the autocorrelation function of some

stationary process IF these limits exist.
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• Extremogram for non-negative regularly varying Xt: for h ≥ 0,

lim
x→∞

P(x−1Xh > 1 | X0 > x) = P(Yα Θh > 1) = E[Θα
h ∧ 1] .

ρX(h) = 0 if and only if Θh = 0 a.s.
if and only if X0 and Xh asymptotically independent.
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Conclusion

•Generalized regular variation is natural to deal with

dependence in the extreme,

•Norms and tail process can be considered independently,

•Classical results extend to asymptotic independence,

•Asymptotics of standadizations depend on the distribution of

the tail process in a complicated way,

• The asymptotic of the extremogram is safe because it involves

standardized indicators.

Thank you for your attention!


