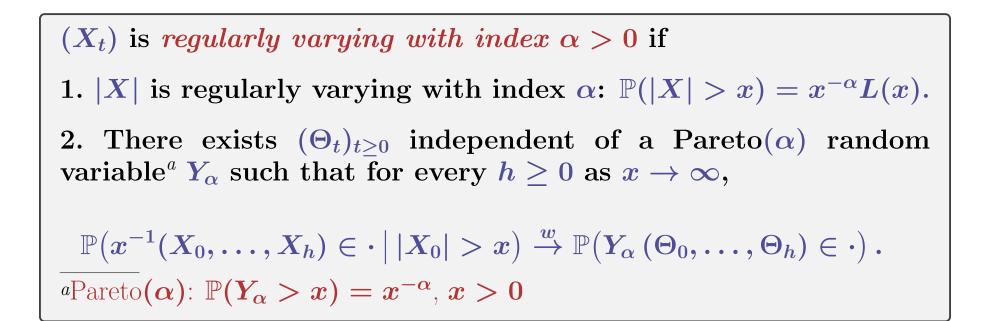
Self-Normalizaton of Sums of Dependent Random Variables¹

Olivier Wintenberger (Sorbonne, Pauli-Institut), Munyea Matsui (Nagoya), Thomas Mikosch (University of Copenhagen)

¹Séminaire géolearning Fréjus, March 31 2025



2

²Davis, Hsing (AoS 1995), Basrak, Hsing (SPA 2009)

(X_t) is regularly varying with index $\alpha > 0$ if

1. |X| is regularly varying with index α : $\mathbb{P}(|X| > x) = x^{-\alpha}L(x)$.

2. There exists $(\Theta_t)_{t\geq 0}$ independent of a $\operatorname{Pareto}(\alpha)$ random variable Y_{α} such that for every $h\geq 0$ as $x\to\infty$,

 $\mathbb{P}ig(x^{-1}(X_0,\ldots,X_h)\in\cdot\,ig|\,|X_0|>xig)\stackrel{w}{
ightarrow}\mathbb{P}ig(Y_lpha\,(\Theta_0,\ldots,\Theta_h)\in\cdotig)\,.$

• (Θ_t) is the spectral tail process.

(X_t) is regularly varying with index $\alpha > 0$ if

1. |X| is regularly varying with index α : $\mathbb{P}(|X| > x) = x^{-\alpha}L(x)$.

2. There exists $(\Theta_t)_{t\geq 0}$ independent of a $\operatorname{Pareto}(\alpha)$ random variable Y_{α} such that for every $h\geq 0$ as $x\to\infty$,

 $\mathbb{P}ig(x^{-1}(X_0,\ldots,X_h)\in\cdot\,ig|\,|X_0|>xig)\stackrel{w}{
ightarrow}\mathbb{P}ig(Y_lpha\,(\Theta_0,\ldots,\Theta_h)\in\cdotig)\,.$

- (Θ_t) is the spectral tail process of (X_t) .
- It describes the propagation of large values at zero into the future.

 (X_t) is regularly varying with index $\alpha > 0$ if

1. |X| is regularly varying with index α : $\mathbb{P}(|X| > x) = x^{-\alpha}L(x)$.

2. There exists $(\Theta_t)_{t\geq 0}$ independent of a $\operatorname{Pareto}(\alpha)$ random variable Y_{α} such that for every $h\geq 0$ as $x\to\infty$,

 $\mathbb{P}ig(x^{-1}(X_0,\ldots,X_h)\in\cdot\,ig|\,|X_0|>xig)\stackrel{w}{
ightarrow}\mathbb{P}ig(Y_lpha\,(\Theta_0,\ldots,\Theta_h)\in\cdotig)\,.$

- (Θ_t) is the spectral tail process of (X_t) .
- It describes the propagation of large values at zero into the future.
- Extremal phenomena in a time series can be described in terms of the spectral tail process.

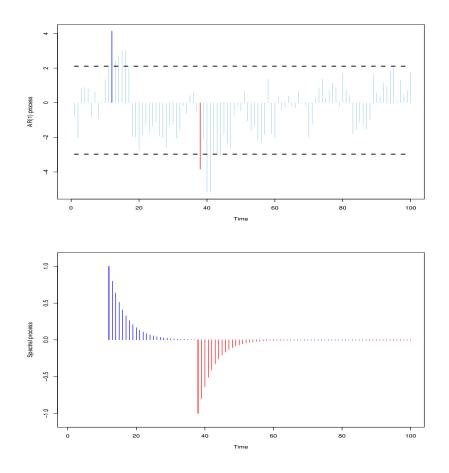


FIGURE 1. Top. Realization of a stationary AR(1) process $X_t = 0.8 X_{t-1} + Z_t$ with iid Student(5) noise (Z_t) . This stationary process is regularly varying with index $\alpha = 5$. The value X_{12} exceeds the 95%-quantile, triggering the lagged spectral tail process 0.8^{t-12} , $t \ge 12$ (blue) while X_{38} falls below the 5%-quantile, triggering the lagged spectral tail process -0.8^{t-38} , $t \ge 38$ (red).

 $M_n = \max(X_1, \ldots, X_n)$ and the (1 - 1/n)-quantiles a_n of X.

 $M_n = \max(X_1, \ldots, X_n)$ and the (1 - 1/n)-quantiles a_n of X.

• Under *mixing* and *anti-clustering* conditions there exists

 $heta_X \in (0,1] ext{ such that as } n o \infty,^3$

 $\mathbb{P}ig(a_n^{-1}M_n\leq xig) o \Phi_lpha^{ heta_X}(x)=\exp(- heta_X\,x^{-lpha})\,,\quad x>0\,.$

 $^{{}^3\}Phi_{lpha}$ is the Fréchet distribution function.

 $M_n = \max(X_1, \ldots, X_n)$ and the (1 - 1/n)-quantiles a_n of X.

• Under *mixing* and *anti-clustering* conditions there exists $\theta_X \in (0, 1]$ such that

 $\mathbb{P}ig(a_n^{-1}M_n\leq xig) o \Phi_lpha^{ heta_X}(x)=\exp(- heta_X\,x^{-lpha})\,,\quad x>0\,.$

• θ_X is the *extremal index of* (X_t) .

 $M_n = \max(X_1, \ldots, X_n)$ and the (1 - 1/n)-quantiles a_n of X.

• Under *mixing* and *anti-clustering* conditions there exists $\theta_X \in (0, 1]$ such that

 $\mathbb{P}ig(a_n^{-1}M_n\leq xig) o \Phi_lpha^{ heta_X}(x)=\exp(- heta_X\,x^{-lpha})\,,\quad x>0\,.$

- θ_X is the extremal index of (X_t) .
- It is interpreted as the reciprocal of the *expected extremal cluster size* above high thresholds.

 $M_n = \max(X_1, \ldots, X_n)$ and the (1 - 1/n)-quantiles a_n of X.

• Under *mixing* and *anti-clustering* conditions there exists $\theta_X \in (0, 1]$ such that

 $\mathbb{P}ig(a_n^{-1}M_n\leq xig) o \Phi_lpha^{ heta_X}(x)=\exp(- heta_X\,x^{-lpha})\,,\quad x>0\,.$

- θ_X is the extremal index of (X_t) .
- It is interpreted as the reciprocal of the *expected extremal cluster size* above high thresholds.
- The extremal index can be expressed in terms of the spectral tail process: for non-negative X_t ,

$$heta_X = \mathbb{E} \Big[\Big(1 - \sup_{t \geq 1} \Theta^lpha_t \Big)_+ \Big] \,.$$

2. Examples of regularly varying time series

• AR(1) process: $X_t = \varphi X_{t-1} + Z_t$, (Z_t) iid regularly varying with index $\alpha > 0$, $|\varphi| < 1$. Then (X_t) is regularly varying with index α and

$$\Theta_t = \Theta_0 \, arphi^t \,, \qquad t \geq 0 \,.$$

• Affine stochastic recurrence equation:⁴ $X_t = A_t X_{t-1} + B_t$, $(A_t, B_t), t \in \mathbb{Z}$, iid, and the equation $\mathbb{E}[|A|^{\alpha}] = 1$ has a positive solution OR (B_t) is regularly varying with index α and $\mathbb{E}[|A|^{\alpha}] < 1$. Then (X_t) is regularly varying with index $\alpha > 0$ and

$$\Theta_t = \Theta_0 \, A_1 \cdots A_t \,, \qquad t \geq 0 \,.$$

⁴Kesten (1973), Goldie (1991), Grincevičius (1985)

- Stochastic volatility model: $X_t = \sigma_t Z_t$, (σ_t) positive stationary, independent of an iid regularly varying sequence (Z_t) with index α . If $\mathbb{E}[\sigma^{\alpha+\delta}] < \infty$ for some $\delta > 0$, (X_t) is regularly varying with index α and $\Theta_t = 0$, $t \neq 0$. Asymptotic independence
- ullet GARCH(1,1) process:⁵ $X_t = \sigma_t Z_t, \, (Z_t) ext{ iid}, \, \mathbb{E}[Z] = 0,$ $\mathbb{E}[Z^2] = 1,$

$$\sigma_t^2 = lpha_0 + lpha_1 \, X_{t-1}^2 + eta_1 \, \sigma_{t-1}^2 = lpha_0 + \left(lpha_1 Z_{t-1}^2 + eta_1
ight) \sigma_{t-1}^2 \, .$$

 (σ_t^2) satisfies an affine stochastic recurrence equation.

It is regularly varying with index $\alpha/2$ if $\mathbb{E}[(\alpha_1 Z_0^2 + \beta_1)^{\alpha/2}] = 1$ and (X_t) inherits regular variation with index α .

 $^{^{5}}$ Engle (1982), Bollerslev (1985)

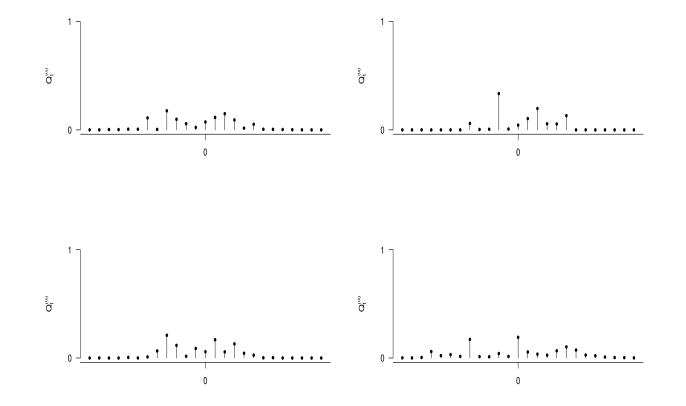


FIGURE 2. Distinct realisations of a standardized spectral tail process of a solution of a SRE.

3. Joint convergence of maxima and sums

• Consider an iid regularly varying sequence (X_t) with index $lpha \in (0, 2)$, i.e., for a generic element X, as $x \to \infty$ $\mathbb{P}(|X| > x) = rac{L(x)}{x^{lpha}}, \quad rac{\mathbb{P}(\pm X > x)}{\mathbb{P}(|X| > x)} \to p_{\pm} = \mathbb{P}(\Theta_0 = \pm 1).$

$$lpha \in (0,2), ext{ i.e., for a generic element } X, \ \mathbb{P}(|X|>x) = x^{-lpha} \, L(x) \,, \quad rac{\mathbb{P}(\pm X>x)}{\mathbb{P}(|X|>x)} o p_{\pm} \,, \ x o \infty \,.$$

• In this case, maxima $M_n = \max(X_1, \ldots, X_n)$ and sums

 $S_n = X_1 + \cdots + X_n$ converge jointly:

$$a_n^{-1}(M_n,S_n-b_n):=a_n^{-1}(\xi_lpha,\eta_lpha)\,,\qquad n o\infty\,.$$

$$lpha \in (0,2), ext{ i.e., for a generic element } X, \ \mathbb{P}(|X|>x) = x^{-lpha} \, L(x) \,, \quad rac{\mathbb{P}(\pm X>x)}{\mathbb{P}(|X|>x)} o p_{\pm} \,, \ x o \infty \,.$$

• In this case, maxima $M_n = \max(X_1, \ldots, X_n)$ and sums

$$S_n = X_1 + \dots + X_n ext{ converge jointly:} \ a_n^{-1}(M_n, S_n - b_n) := a_n^{-1}(\xi_lpha, \eta_lpha)\,, \qquad n o \infty\,.$$

• ξ_{α} has a Fréchet Φ_{α} -distribution, η_{α} is α -stable.

$$lpha \in (0,2), ext{ i.e., for a generic element } X, \ \mathbb{P}(|X|>x) = x^{-lpha} \, L(x) \,, \quad rac{\mathbb{P}(\pm X>x)}{\mathbb{P}(|X|>x)} o p_{\pm} \,, \; x o \infty \,.$$

• In this case, maxima $M_n = \max(X_1, \ldots, X_n)$ and sums

$$S_n = X_1 + \dots + X_n ext{ converge jointly:} \ a_n^{-1}(M_n, S_n - b_n) := a_n^{-1}(\xi_lpha, \eta_lpha)\,, \qquad n o \infty\,.$$

- ξ_{α} has a Fréchet Φ_{α} -distribution, η_{α} is α -stable.
- ξ_{α} and η_{α} are dependent.

$$lpha \in (0,2), ext{ i.e., for a generic element } X, \ \mathbb{P}(|X|>x) = x^{-lpha} \, L(x) \,, \quad rac{\mathbb{P}(\pm X>x)}{\mathbb{P}(|X|>x)} o p_{\pm} \,, \ x o \infty \,.$$

• In this case, maxima $M_n = \max(X_1, \ldots, X_n)$ and sums

$$S_n = X_1 + \dots + X_n ext{ converge jointly:} \ a_n^{-1}(M_n, S_n - b_n) := a_n^{-1}(\xi_lpha, \eta_lpha)\,, \qquad n o \infty\,.$$

- ξ_{α} has a Fréchet Φ_{α} -distribution, η_{α} is α -stable.
- ξ_{α} and η_{α} are dependent.
- This is in stark contrast to the finite variance case $\alpha > 2$ where M_n and S_n require different normalizations a_n and \sqrt{n} , respectively, and the limit components are independent.

4. Self-normalized sums

• In the iid case, sums normalized by maxima converge for $lpha \in (0,2)$: $rac{S_n - b_n}{M_n} \stackrel{d}{ o} rac{\xi_lpha}{\eta_lpha}, \qquad n o \infty \,.$

• Goals of self-normalizations:

1. Avoid knowledge of the quantile normalization a_n .

2. Numerator ξ_{α} and denominator η_a are dependent. The ratio $\xi_{\alpha}/\eta_{\alpha}$ might have lighter tails than ξ_{α} (it has moments of order $\alpha - \varepsilon$ only).

3. There might be a "continuous transition" from the finite to the infinite variance case.

• A classical result by Logan, Mallows, Rice, Shepp (1973) for studentized

$$\begin{array}{l} \text{sums: for } \alpha \in (1,2) \text{ and } p > \alpha \\ \\ \frac{S_n - b_n}{\gamma_{n,p}} \stackrel{d}{\to} R_{\alpha,p} \mathrel{\mathop:}= \frac{\xi_\alpha}{\eta_{\alpha,p}}, \qquad n \to \infty \,, \end{array}$$

where

$$\gamma_{n,p} = \Big(\sum_{t=1}^n |X_t|^p \Big)^{1/p} \,,$$

- ξ_{α} is α -stable,
- $\eta^p_{\alpha,p}$ is α/p -stable,
- ξ_{α} and $\eta_{\alpha,p}$ are dependent,
- The limit ratio $R_{\alpha,p}$ has density whose tails are asymptotically equivalent to those of the Gaussian density.

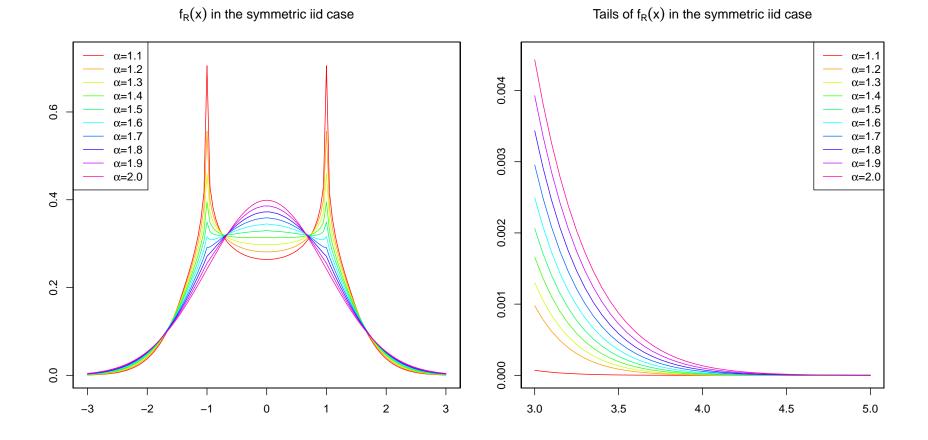


FIGURE 3. Left. Densities $f_{R_{\alpha,2}^X}$ of the studentized sums for iid symmetric X for various $\alpha \in (1, 2)$. Right. Tail behavior of $f_{R_{\alpha,2}^X}$.

5. Self-normalizations for regularly varying stationary time series

• Under (weak) mixing and anti-clustering conditions the limits

$$a_n^{-1}(S_n-b_n,M_n,\gamma_{n,p})\stackrel{d}{
ightarrow}(\xi_lpha,\eta_lpha,\eta_{lpha,p})$$

exist for $p > \alpha$, $\alpha \in (0, 2)$ and the limiting quantities can be expressed in terms of the spectral tail process.

• Hence

$$rac{S_n-b_n}{M_n} \stackrel{d}{
ightarrow} rac{\xi_lpha}{\eta_lpha}, \qquad rac{S_n-b_n}{\gamma_{n,p}} \stackrel{d}{
ightarrow} rac{\xi_lpha}{\eta_{lpha,p}}$$

• The limit ratios of self-normalized sums have the same distribution as in the iid case (modulo a change of scale)

- The limit ratios of self-normalized sums have the same distribution as in the iid case (modulo a change of scale)
- IF and ONLY IF the spectral tail process Θ_t , $t \neq 0$, is deterministic.
- Examples.
 - 1. Linear processes driven by iid regularly varying noise
 - 2. Regularly varying stochastic volatility models
 - **3.** Models with $\Theta_t = 0, t \neq 0$.

- If Θ_t is random for some $t \neq 0$ then the limit ratios of self-normalized sums have a very complicated random structure.
- In some cases one can show that all moments of the limit ratios are finite.
- Examples.
 - **1.** Solutions to affine stochastic recurrence equations
 - **2.** GARCH(1, 1) processes
- There exist examples where no even moment larger than 2 of the limit ratio is finite.

6. Self-normalized quantities can fool you

• Assume (X_t) regularly varying stationary with index α , $p > \alpha$. Then

$$egin{aligned} R_n(p) \ &= \ rac{M_n^{(p)}}{S_n^{(p)}} = rac{\max_{1 \leq t \leq n} |X_i|^p}{|X_1|^p + \cdots + |X_n|^p} \ & extstyle \ & rac{d}{ otarrow} \ R(p) \leq 1 \quad ext{a.s.} \end{aligned}$$

while $R_n(p) \stackrel{\mathrm{a.s.}}{\to} 0$ for $p < \alpha$.

• For an AR(1) process $X_t = \varphi X_{t-1} + Z_t$, $|\varphi| < 1$, with iid regularly varying (Z_i) with index α , $R(p) \leq 1 - |\varphi|^p$ a.s.

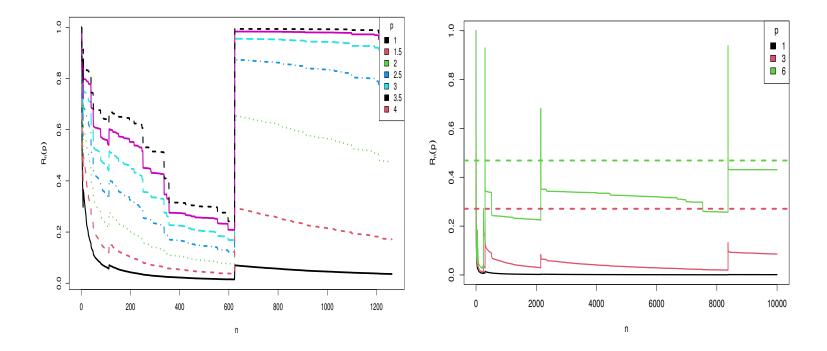


FIGURE 4. Left. Plots of the ratio statistics $R_n(p)$ for an iid Pareto(2)-distributed (X_t) with tail $\mathbb{P}(X_t > x) = x^{-2}, x > 1$, hence $R_n(p) \xrightarrow{\text{a.s.}} 0$ as $n \to \infty$ if and only if p < 2. Right. Plots of the ratio statistics $R_n(p)$ for a regularly varying AR(1) process $X_t = 0.8X_{t-1} + Z_t$ with iid Pareto(2)-distributed noise (Z_t) , hence $\mathbb{E}[|X|^p] = \infty$ for $p \ge 2$. For p > 2 the support of the limiting random variable R(p) is bounded by $1 - 0.8^p$. The stippled lines indicate this value for p = 3 and p = 6. One gets the wrong impression that $R_n(3) \xrightarrow{\text{a.s.}} 0$ as $n \to \infty$.

7. The extremogram as an alternative to the auto-correlation

FUNCTION

FIGURE 5. S&P 500 daily return series, 1 May, 2015 - 8 May, 2020. The straight lines indicate the empirical q- and (1 - q)-quantiles of the data for q = 0.01, 0.025, 0.05.

MEF of ABS(S&P Closing data)

QQ plot S&P Closing--Student(2)

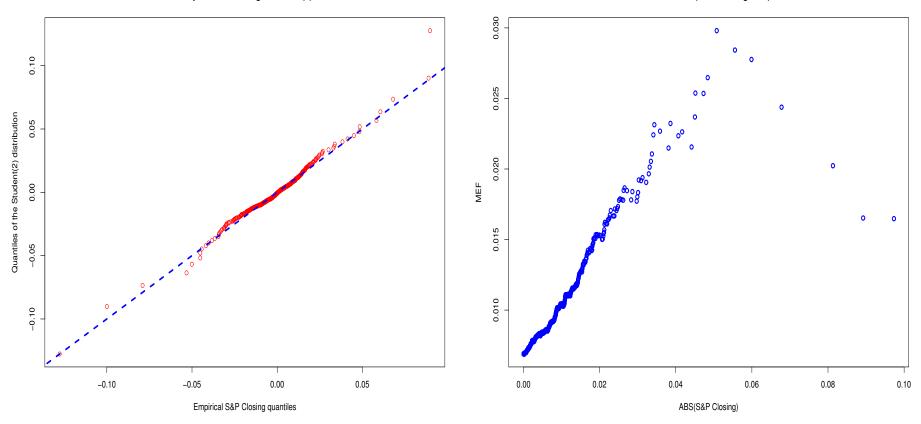


FIGURE 6. Left. QQ-plot of the S&P 500 daily closing log-returns against the Student(2) distribution. Right. Mean Excess Plot of the absolute values: $\mathbb{E}_{F}[|X| - u \mid |X| > u], u > 0.$

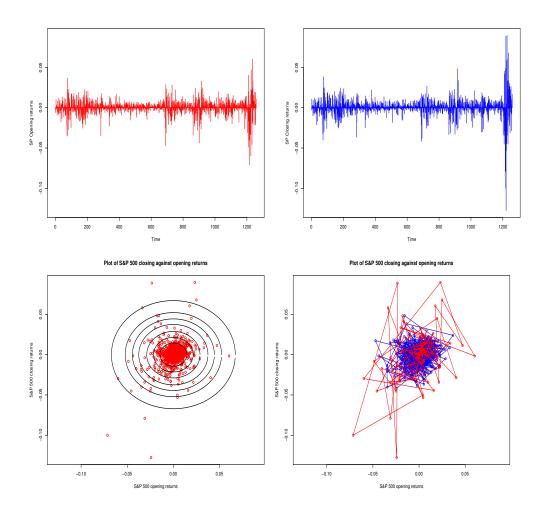


FIGURE 7. Top: S&P 500 daily opening (left) and closing (right) log-returns. Bottom: Scatterplot closing against opening. Circles indicate 80, 90, 95, 97, 98, 99, 99.5% quantiles of the distances from **0**.

Measures of serial dependence in a time series

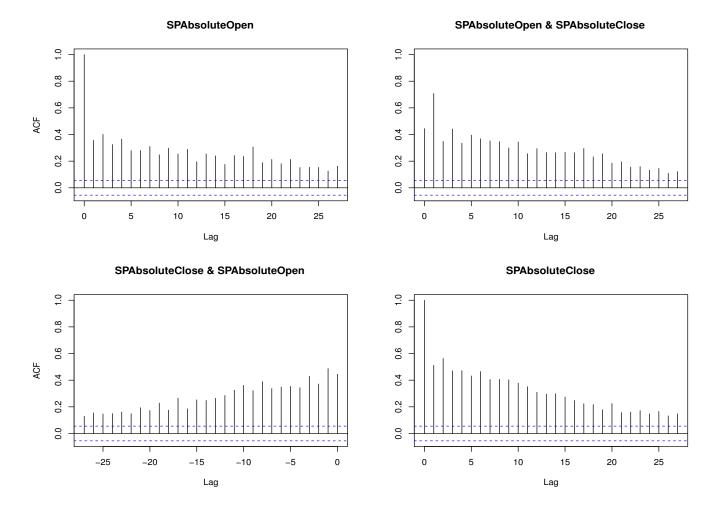


FIGURE 8. Sample auto- and cross-correlations for the corresponding absolute values.

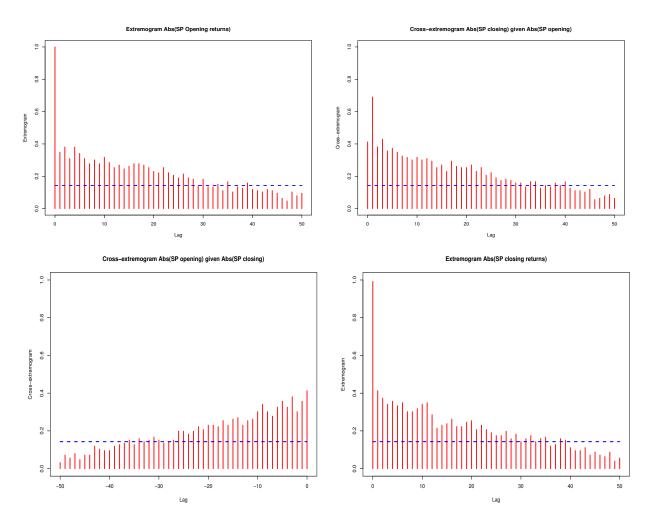


FIGURE 9. Sample extremograms and cross-extremograms of the absolute values. Thresholds are empirical 90%-quantiles.

• The *extremogram* of a stationary sequence (X_t) :

$$\lim_{x o\infty} \mathbb{P}(X_h > x ~|~ X_0 > x) =
ho_X(h)\,, \qquad h\geq 0\,.$$

• The cross-extremogram of (X_t) given Y_0 :

$$\lim_{x o\infty} \mathbb{P}(X_h > x ~|~ Y_0 > x) =
ho_{X|Y}(h)\,, \qquad h\geq 0\,.$$

• The extremogram is approximated by the auto-correlations of the stationary sequence $(1(X_t > x_n))$ for high quantile x_n . • The *extremogram* of a stationary sequence (X_t) :

$$\lim_{x o\infty} \mathbb{P}(X_h > x ~|~ X_0 > x) =
ho_X(h)\,, \qquad h\geq 0\,.$$

• The cross-extremogram of (X_t) given (Y_t) :

$$\lim_{x o\infty} \mathbb{P}(X_h > x \mid Y_0 > x) =
ho_{X|Y}(h)\,, \qquad h\geq 0\,.$$

- The extremogram is approximated by the auto-correlations of the stationary sequence $(1(X_t > x_n))$ for high quantile x_n .
- The extremogram is the autocorrelation function of some stationary process IF these limits exist.

• Extremogram for non-negative regularly varying X_t : for $h \ge 0$,

 $\lim_{x o\infty} \mathbb{P}(x^{-1}X_h>1 ~|~ X_0>x) = \mathbb{P}(Y_lpha\,\Theta_h>1) = \mathbb{E}[\Theta_h^lpha\wedge 1]$.

 $\rho_X(h) = 0$ if and only if $\Theta_h = 0$ a.s. if and only if X_0 and X_h asymptotically independent.

CONCLUSION

- Generalized regular variation is natural to deal with dependence in the extreme,
- Norms and tail process can be considered independently,
- Classical results extend to asymptotic independence,
- Asymptotics of standadizations depend on the distribution of the tail process in a complicated way,
- The asymptotic of the extremogram is safe because it involves standardized indicators.

Thank you for your attention!