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1. REGULAR VARIATION OF STATIONARY TIME SERIES

(X3) is regularly varying with index o > 0 if
1. | X| is regularly varying with index a: P(|X| > ) = 2~ “L(x).

2. There exists (©;);>¢ independent of a Pareto(ca) random
variable® Y, such that for every h > 0 as * — oo,

Pz (Xo,...,Xp) € || Xo| > ) = P(Ya (Op,...,04) € +).
sPareto(a): P(Yo > ) = 7% > 0

2Davis, Hsing (AoS 1995), Basrak, Hsing (SPA 2009)
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(X3) is regularly varying with index o > 0 if
1. | X| is regularly varying with index a: P(|X| > ) = @~ “L(x).

2. There exists (©;);>¢ independent of a Pareto(a) random
variable Y, such that for every h > 0 as * — oo,

P(x™"(Xo,...,Xn) € - ||Xo| > z) = P(Ya (Op,...,04) € ).

® (O;) is the spectral tail process of (X;).

e It describes the propagation of large values at zero into the
future.

e Extremal phenomena in a time series can be described in terms

of the spectral tail process.
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Ficure 1. Top. Realization of a stationary AR(1) process X; = 0.8 X;_1 + Z; with iid Student(5)
noise (Z;). This stationary process is regularly varying with index a = 5. The value X;5 exceeds
the 95%-quantile, triggering the lagged spectral tail process 0.8'712 ¢ > 12 (blue) while X3g falls
below the 5%-quantile, triggering the lagged spectral tail process —0.8'738 ¢ > 38 (red).



e For non-negative X;: consider the maxrima

M,, = max(Xy,...,X,) and the (1 — 1/n)-quantiles a,, of X.
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3P, is the Fréchet distribution tunction.
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e For non-negative X;: consider the maxrima
M,, = max(Xy,...,X,) and the (1 — 1/n)-quantiles a,, of X.
e Under mixing and anti-clustering conditions there exists

Ox € (0,1] such that
Pla 'M, < z) - ®%%(z) = exp(—0xz~*), = >0.
e Ox is the extremal index of (X3).

e It is interpreted as the reciprocal of the expected extremal

cluster size above high thresholds.
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e For non-negative X;: consider the maxrima
M,, = max(Xy,...,X,) and the (1 — 1/n)-quantiles a,, of X.
e Under mixing and anti-clustering conditions there exists
Ox € (0,1] such that
Pla 'M, < z) - ®%%(z) = exp(—0xx~*), = >0.
e Ox is the extremal index of (X3).
e It is interpreted as the reciprocal of the expected extremal
cluster size above high thresholds.

e The extremal index can be expressed in terms of the spectral

tail process: for non-negative X,

0x =E|(1 - sup @gu .

t>1
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2. EXAMPLES OF REGULARLY VARYING TIME SERIES

e AR(1) process: X; = ¢ Xy 1 + Z;, (Z;) iid regularly varying
with index o« > 0, || < 1. Then (X;) is regularly varying with

index o and

@t:@ogot, t>0.

e Affine stochastic recurrence equatiom:4 X = A X1+ By,
(As, By), t € Z, iid, and the equation E[|A|*] = 1 has a positive
solution OR (B;) is regularly varying with index a and
E[|A]*] < 1. Then (X;) is regularly varying with index o« > 0

and

@t:@gAl"'At, t>0.

4Kesten (1973), Goldie (1991), Grincevicius (1985)
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e Stochastic volatility model: X; = o Z;, (0;) positive stationary,
independent of an iid regularly varying sequence (Z;) with
index a. If E[c*1?] < co for some § > 0, (X;) is regularly

varying with index a and ®; = 0, £ # 0.

[ Asymptotic independence ]

e GARCH(1,1) process:® X; = oy Z;, (Z;) iid, E[Z] = 0,
E[Z*] = 1,
O'tz = Qg+ o Xt2—1 + B4 Ut2—1 = Qo + (ath2—1 + B1) Ut2—1 .
(o7) satisfies an affine stochastic recurrence equation.
It is regularly varying with index «/2 if E[(a1 Z] + B1)? =1

and (X;) inherits regular variation with index «.

SEngle (1982), Bollerslev (1985)
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meure 2. Distinet realisations of a standardized spectral tail process of a so-
lution of a SRE.



3. JOINT CONVERGENCE OF MAXIMA AND SUMS

e Consider an iid regularly varying sequence (X;) with index

a € (0,2), i.e., for a generic element X, as  — oo
L(x) P(£X > x)

P(|X — , > = P(Oy = £1).
(1XI>2) = =20 psrs gy = P =@ = +1)

15
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e Consider an iid regularly varying sequence (X;) with index

a € (0,2), i.e., for a generic element X,

P(£X > x)
P(|X| >x) = *L(x > Dt , T — OO.
e In this case, maxima M,, = max(X;,..., X,,) and sums

S, = X7+ -+ X,, converge jointly:

a,;l(Mn, Sn — bn) = a’;l(saa T’a) ’ n — o0.
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17
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e Consider an iid regularly varying sequence (X;) with index

a € (0,2), i.e., for a generic element X,

P(£X > x)
P(|X| >x) = *L(x > Dt , T — OO.
(1X| > z) I
e In this case, maxima M,, = max(X;,..., X,,) and sums

S, = X7+ -+ X,, converge jointly:
agl(Mn, Sn — bp) 1= agl(fa, Na) n — o0o.

e £, has a Fréchet ®,-distribution, n, is a-stable.

e £, and 7, are dependent.

19

e This is in stark contrast to the finite variance case o« > 2 where

M,, and S,, require different normalizations a,, and /7,

respectively, and the limit components are independent.
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4. SELF-NORMALIZED SUMS

e In the iid case, sums normalized by maxima converge for

a € (0,2):

Sn - bn d 504
M, " Na

e Goals of self~-normalizations:

’ n%wo

1. Avoid knowledge of the quantile normalization a,,.

2. Numerator £, and denominator 7, are dependent. The
ratio £,/7, might have ligther tails than £, (it has moments of
order o — ¢ only).

3. There might be a ”continuous transition” from the finite to

the infinite variance case.



e A classical result by Logan, Mallows, Rice, Shepp (1973) for studentized

sums: for a € (1,2) and p > «

Sn — bn o
d>Ra,p::i, n — oo,
PY’I’L,p T’Oé,p
where
i 1/p
Tnp = (Z |Xt|p) 9
t=1

® £, is a-stable,

o b  is o/ p-stable,

e £, and 7, , are dependent,

e The limit ratio 7, , has density whose tails are asymptotically

equivalent to those of the (Gaussian density.

21
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f=(x) in the symmetric iid case

Tails of fz(x) in the symmetric iid case
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reure 3. Left. Densities f RX, of the studentized sums for iid symmetric X

for various o« € (1, 2). nght Tail behavior of fRX .




23

5. SELF-NORMALIZATIONS FOR REGULARLY VARYING STATIONARY TIME

SERIES

e Under (weak) mixing and anti-clustering conditions the limits

_ d
anl(Sn o bn’ Mn’ ’anp) — (Sa’ na’ navp)
exist for p > a, a € (0,2) and the limiting quantities can be
expressed in terms of the spectral tail process.

e Hence
Sn_bndéa Sn_bnd sa

9

M, Na Yn,p Ne,p
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The good news

® The limit ratios of self~-normalized sums have the same

distribution as in the iid case (modulo a change of scale)
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The good news

e The limit ratios of self-normalized sums have the same
distribution as in the iid case (modulo a change of scale)
o [F' and ONLY IF the spectral tail process ®;, t # 0, is
deterministic.
e Examples.
1. Linear processes driven by iid regularly varying noise

2. Regularly varying stochastic volatility models

3. Models with ®; = 0, t # 0.
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The bad news

o If ®; is random for some t # 0 then the limit ratios of
self-normalized sums have a very complicated random
structure.

e In some cases one can show that all moments of the limit ratios
are finite.

e Examples.

1. Solutions to affine stochastic recurrence equations
2. GARCH(1,1) processes
® There exist examples where no even moment larger than 2 of

the limit ratio is finite.
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6. SELF-NORMALIZED QUANTITIES CAN FOOL YOU

e Assume (X;) regularly varying stationary with index «, p > «a.
Then
M(p) o maxlgtgn |lep
Sf»,,p) B I Xq|P+ -+ | X, P
4 R(p) <1 as.

while R, (p) =3 0 for p < a.
e For an AR(1) process X; = ¢ X; 1 + Z;, || < 1, with iid

regularly varying (Z;) with index a, R(p) < 1 — [¢p|P a.s.
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Ficure 4. Left. Plots of the ratio statistics R, (p) for an iid Pareto(2)-distributed (X}) with tail
P(X;, > x) = 2% a > 1, hence R,(p) 23 0 as n — oo if and only if p < 2. Right. Plots
of the ratio statistics R, (p) for a regularly varying AR(1) process X; = 0.8X;_; + Z; with iid
Pareto(2)-distributed noise (Z;), hence E[| X |P] = oo for p > 2. For p > 2 the support of the
limiting random variable R(p) is bounded by 1 — 0.87. The stippled lines indicate this value for

p = 3 and p = 6. One gets the wrong impression that R, (3) R 0asn — oo.
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7. THE EXTREMOGRAM AS AN ALTERNATIVE TO THE AUTO-CORRELATION

FUNCTION

S&P 500 Closing returns
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reure 5. O&P 500 daily return series, 1 May, 2015 — 8 May, 2020. The
straight lines indicate the empirical g- and (1 — q)-quantiles of the data
for ¢ = 0.01, 0.025, 0.05.
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Quantiles of the Student(2) distribution
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movre 6. eft. QQ)-plot of the S&P 500 daily closing log-returns against the
Student(2) distribution. Right. Mean Ezcess Plot of the absolute values:

Ep(|X| —u | |X] > u], u>0.
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Plot of S&P 500 closing against opening returns Plot of S&P 500 closing against opening returns

rcure 7. LOP: S&P 500 daily opening (left) and closing (right) log-returns.
Bottom: Scatterplot closing against opening. Circles indicate 80, 90, 95,
97, 98, 99, 99.5% quantiles of the distances from O.
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MEASURES OF SERIAL DEPENDENCE IN A TIME SERIES

SPAbsoluteOpen SPAbsoluteOpen & SPAbsoluteClose

SPAbsoluteClose & SPAbsoluteOpen SPAbsoluteClose

reure 8. dample auto- and cross-correlations for the corresponding absolute values.
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revre 9. Dample extremograms and cross-extremograms of the absolute val-
ues. Thresholds are empirical 90%-quantiles.
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e The extremogram of a stationary sequence (X4):

lim P(X, >z | Xo > z) = px(h), h>0.

r—rO0

e The cross-extremogram of (X;) given Yjy:

lim P(X, >z | Yo > z) = pxjv(h), h>0.

T—> 00 _

e The extremogram is approximated by the auto-correlations of

the stationary sequence (1(X; > x,)) for high quantile x,,.



e The extremogram of a stationary sequence (X4):

lim P(X, >z | Xo > z) = px(h), h>0.

r—rO0

® The cross-extremogram of (X;) given (Y;):

lim P(X, >z | Yo > z) = pxjv(h), h>0.

T— 00 _

e The extremogram is approximated by the auto-correlations of
the stationary sequence (1(X; > x,)) for high quantile x,,.
e The extremogram is the autocorrelation function of some

stationary process IF these limits exist.

35
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e [ixtremogram for non-negative regularly varying X;: for h > 0,

lim P(z7' X, > 1| Xo>x) =P(YaOr > 1) = E[O) A1].

r—0o0

px(h) = 0 if and only if ®;, = 0 a.s.
if and only if Xy and X, asymptotically independent.
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CONCLUSION

e Generalized regular variation is natural to deal with
dependence in the extreme,

e Norms and tail process can be considered independently,

e Classical results extend to asymptotic independence,

e Asymptotics of standadizations depend on the distribution of
the tail process in a complicated way,

e The asymptotic of the extremogram is safe because it involves

standardized indicators.

Thank you for your attention!




