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Geostatistics in a nutshell

Main objectives
@ model a natural variable of interest, seen as a regionalized variable
z(7), z € X C R? over space(-time)
@ make predictions at unobserved locations

@ quantify uncertainty
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Hypothesis

z iIs a realization of a random field Z



Gaussian Processes Z(r), v € X C R¢

Z = (Z(x1),...,Z(xy)) is a Gaussian vector
Z ~ N(p, Zg), with

o u=E(2)
o (X9)ij = Cov(Z(s), Z(x;)) = Co(|zi — x5])
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Gaussian Processes Z(r), v € X C R¢

= (Z(x1),...,Z(zy)) is a Gaussian vector

~ N(p, X ) W|th

o 1n=E(Z)

® (Xg)i; = Cov(Z(xi), Z(x;)) = Co(|zi — 5])

Maximum-likelihood estimation

(fi, 8) = argmin(,, g log(detXg) + (Z — p)'Sy " (Z — p)

Conditioning (prediction)

Z(z7)|Z(x7) ~ N(ZF,3%), with T N D = & such that
o Z*(zr) = pr + SrpEpp(Z(2p) — 1p)
o ¥ =Yrr — SrpXphSpr



Limitations

NOAA/NESDIS GEQ—POLAR BLENDED 5 ki SST ANALYSIS
FOR THE US ATLANTIC

@ GPs generally assume a stationary covariance function,
which may not be appropriate for all spatial data :
Cov(Z(z:), Z(x;)) = Colzi — ;)

Matérn covariance | N | |
] N 291-v Ti—T; Ti—T;
C(mz,ib']) =0 W <T> KV <T

@ GPs can be computationally expensive for large datasets
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Non stationary covariance constructions

Convolution models

Cov(Z(z), Z(y)) = / / Fooas0) £y (1) fr(t)dudt
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Varying parameters in SPDE
(K2 = VH,V)?Z(z) = W ()

Space deformation



Space Deformation

Relax the stationarity assumption
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Space deformation example: left geographical space, right deformed space

= fy is a transport map



Formalization

@ The sampling design X = (z1,...,x,) is now considered random
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Formalization

@ The sampling design X = (z1,...,x,) is now considered random

@ We want to learn a transport map fy (piecewise 1) such that the covariance
function of Z(x) is stationary and isotropic in the deformed space

x@ = {f@('r)a MRS :X:}
@ In other words, we want to learn the joint distribution of Z and X

@ The likelihood writes

p(Z, X) = p(Z|X)p(fo(X))
= N(Z; p, Sg)pz(X)|det Ty, (X)|

given some prior p, over X (e.g. uniform)



Normalizing Flows

Based on a recursive application of the change of variable formula:

po(u) = pa(fy ' (u))ldet 1 (u)]

o fy is a diffeomorphism (piecewise C!)

@ fop is a NN trained by maximum likelihood estimation



Normalizing Flows

Based on a recursive application of the change of variable formula:

po(u) = pa(fy ' (u))ldet 1 (u)]

o fy is a diffeomorphism (piecewise C!)

@ fop is a NN trained by maximum likelihood estimation

Example: RealNVP
Stack coupling layers of the form

Yi.d = X1.d
Yd+1:D = Xd+1:0 © exp (s(X1.4)) + t(X1.4),

where s and ¢ are NN, alternating between the variables



Scaling to large datasets

Several methods have been proposed to scale Gaussian processes to large datasets,
including:

e Covariance tapering

Clai, x5) = C(wi,27) 0% (|2; — a;5))
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Scaling to large datasets: Vecchia approximation
Based on the chain rule of probability

p(Z) = p(21) [ [ p(Zi| Z<i) = p(20) | | 9(Zi] Zogiy), i) € {< i}
1=2 =2

This provides =1 = UU’, where U is a sparse upper triangular matrix such that

1/2
t . L .
< - C; Ec(l)Cz) ifi=7
Uii =\ =(S4Ci)Uii if j € c(i)

0 otherwise

o 02 = Cov(Z(z;), Z(x;))
o CZ = COV(ZZ'7 Zc(z))
° Z:c(z) = COV(Z(xc(i))a Z(wc(l)))



Tools and Related work

Tools
@ PyTorch
@ GPyTorch: https://docs.gpytorch.ai/en/stable/

Related work
@ Deep kernel learning: http://proceedings.mlr.press/v561/wilsonl6.pdf

@ Normalizing flows:
https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf

@ Vecchia approximation:
https://proceedings.mlr.press/v206/jimenez23a/jimenez23a. pdf


https://docs.gpytorch.ai/en/stable/
http://proceedings.mlr.press/v51/wilson16.pdf
https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf
https://proceedings.mlr.press/v206/jimenez23a/jimenez23a.pdf

Some (very) preliminary results
Impose f(z) = o+ (z — 0) * ||z — 0||?,z € [-5, 5]? with o the origin
Sample a stationary GP with a Matérn covariance function with v = 1.5 and / = 0.1
on a 50 x 50 grid

Displacement Magnitude (Small Scale)

Displacement Magnitude (Large Scale)




Conclusions

@ We proposed a new framework for geostatistics based on deep kernel learning and
normalizing flows

@ The framework allows for non-stationary covariance functions and can be scaled
to large datasets using the Vecchia approximation

@ The framework is implemented in PyTorch and GPyTorch, making it easy to use
and extend

@ Future work includes applying the framework to real-world datasets and exploring
other applications of normalizing flows in geostatistics



Perspectives

Make it work
Apply to real-world datasets

Implement the Vecchia approximation

Spatio-temporal modeling?



