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Geostatistics in a nutshell

Main objectives

model a natural variable of interest, seen as a regionalized variable
z(x), x ∈ X ⊂ Rd over space(-time)

make predictions at unobserved locations

quantify uncertainty

Hypothesis

z is a realization of a random field Z
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Gaussian Processes Z(x), x ∈ X ⊂ Rd

Z = (Z(x1), . . . , Z(xn)) is a Gaussian vector
Z ∼ N(µ,Σθ), with

µ = E(Z)

(Σθ)i,j = Cov(Z(xi), Z(xj)) = Cθ(|xi − xj |)

Maximum-likelihood estimation

(µ̂, θ̂) = argmin(µ,θ) log(detΣθ) + (Z − µ)tΣ−1
θ (Z − µ)

Conditioning (prediction)

Z(xT )|Z(xT ) ∼ N(Z⋆
T ,Σ

⋆
T ), with T ∩D = ∅ such that

Z⋆(xT ) = µT +ΣTDΣ
−1
DD(Z(xD)− µD)

Σ⋆
T = ΣTT − ΣTDΣ

−1
DDΣDT
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Limitations

GPs generally assume a stationary covariance function,
which may not be appropriate for all spatial data :
Cov(Z(xi), Z(xj)) = Cθ(|xi − xj |)

Matérn covariance
C(xi, xj) = σ2 21−ν

Γ(ν)

(
∥xi−xj∥

ℓ

)ν
Kν

(
∥xi−xj∥

ℓ

)
GPs can be computationally expensive for large datasets



Non stationary covariance constructions

Convolution models

Cov(Z(x), Z(y)) =

∫
T

∫
Rd

fx(u, t)fy(u, t)fT (t)dudt

C(x, y) = |Σx|1/4|Σy|1/4
∣∣∣∣Σx +Σy

2

∣∣∣∣−1/2 21−ν(x,y)Qxy(x− y)ν(x,y)√
Γ(ν(x))Γ(ν(y))

Kν(x,y)

(√
Qxy(x− y)

)
Varying parameters in SPDE

(κ2x −∇Hx∇)α/2Z(x) = W (x)

Space deformation

Z(x) = Z(f(x)) ⇒ Cov(Z(x), Z(y)) = C(f(x), f(y))



Space Deformation
Relax the stationarity assumption

Cθ(xi,xj) = C(|fθ(xi)− fθ(xj)|)

Space deformation example: left geographical space, right deformed space

⇒ fθ is a transport map



Formalization

The sampling design X = (x1, . . . , xn) is now considered random

We want to learn a transport map fθ (piecewise C1) such that the covariance
function of Z(x) is stationary and isotropic in the deformed space
Xθ = {fθ(x), x ∈ X}
In other words, we want to learn the joint distribution of Z and X

The likelihood writes

p(Z,X) = p(Z|X)p(fθ(X))

= N(Z;µ,Σθ)px(X)|detJfθ(X)|−1

given some prior px over X (e.g. uniform)



Formalization

The sampling design X = (x1, . . . , xn) is now considered random

We want to learn a transport map fθ (piecewise C1) such that the covariance
function of Z(x) is stationary and isotropic in the deformed space
Xθ = {fθ(x), x ∈ X}
In other words, we want to learn the joint distribution of Z and X

The likelihood writes

p(Z,X) = p(Z|X)p(fθ(X))

= N(Z;µ,Σθ)px(X)|detJfθ(X)|−1

given some prior px over X (e.g. uniform)



Formalization

The sampling design X = (x1, . . . , xn) is now considered random

We want to learn a transport map fθ (piecewise C1) such that the covariance
function of Z(x) is stationary and isotropic in the deformed space
Xθ = {fθ(x), x ∈ X}
In other words, we want to learn the joint distribution of Z and X

The likelihood writes

p(Z,X) = p(Z|X)p(fθ(X))

= N(Z;µ,Σθ)px(X)|detJfθ(X)|−1

given some prior px over X (e.g. uniform)



Formalization

The sampling design X = (x1, . . . , xn) is now considered random

We want to learn a transport map fθ (piecewise C1) such that the covariance
function of Z(x) is stationary and isotropic in the deformed space
Xθ = {fθ(x), x ∈ X}
In other words, we want to learn the joint distribution of Z and X

The likelihood writes

p(Z,X) = p(Z|X)p(fθ(X))

= N(Z;µ,Σθ)px(X)|detJfθ(X)|−1

given some prior px over X (e.g. uniform)



Normalizing Flows

Based on a recursive application of the change of variable formula:

pθ(u) = px(f
−1
θ (u))|detJf−1

θ
(u)|

fθ is a diffeomorphism (piecewise C1)

fθ is a NN trained by maximum likelihood estimation

Example: RealNVP
Stack coupling layers of the form

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s(x1:d)) + t(x1:d),

where s and t are NN, alternating between the variables
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Scaling to large datasets

Several methods have been proposed to scale Gaussian processes to large datasets,
including:

Covariance tapering

C(xi, xj) = C(xi, xj)C
CS(|xi − xj |)

Low rank approximations, e.g. predictice processes/inducing points

C(xi, xj) = C(xi, x
⋆)C−1

x⋆ C(x⋆, xj) + τ2δij

SPDE methods

Vecchia approximation
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Scaling to large datasets: Vecchia approximation

Based on the chain rule of probability

p(Z) = p(Z1)

n∏
i=2

p(Zi|Z<i) ≈ p(Z1)

n∏
i=2

p(Zi|Zc(i)), c(i) ⊂ {< i}

This provides Σ−1 = UU ′, where U is a sparse upper triangular matrix such that

Uj,i =


(
σ2
i − CiΣ

−1
c(i)C

t
i

)−1/2
if i = j

−(Σ−1
c(i)Ci)jUi,i if j ∈ c(i)

0 otherwise

σ2
i = Cov(Z(xi), Z(xi))

Ci = Cov(Zi, Zc(i))

Σc(i) = Cov(Z(xc(i)), Z(xc(i)))



Tools and Related work

Tools

PyTorch

GPyTorch: https://docs.gpytorch.ai/en/stable/

Related work

Deep kernel learning: http://proceedings.mlr.press/v51/wilson16.pdf

Normalizing flows:
https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf

Vecchia approximation:
https://proceedings.mlr.press/v206/jimenez23a/jimenez23a.pdf

https://docs.gpytorch.ai/en/stable/
http://proceedings.mlr.press/v51/wilson16.pdf
https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf
https://proceedings.mlr.press/v206/jimenez23a/jimenez23a.pdf


Some (very) preliminary results
Impose f(x) = o+ (x− o) ∗ ∥x− o∥2, x ∈ [−5, 5]2 with o the origin
Sample a stationary GP with a Matérn covariance function with ν = 1.5 and ℓ = 0.1
on a 50× 50 grid



Conclusions

We proposed a new framework for geostatistics based on deep kernel learning and
normalizing flows

The framework allows for non-stationary covariance functions and can be scaled
to large datasets using the Vecchia approximation

The framework is implemented in PyTorch and GPyTorch, making it easy to use
and extend

Future work includes applying the framework to real-world datasets and exploring
other applications of normalizing flows in geostatistics



Perspectives

Make it work

Apply to real-world datasets

Implement the Vecchia approximation

Spatio-temporal modeling?


