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Orographic rainfall:
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Orographic precipitation is ubiquitous:   
   → Mediterranean climate: Sierra Navada (Spain & USA)
   → Temperate climate: Alpes
   → Tropical climate: Andes & High tropical islands

 Introduction (1/5): orographic rainfall leads to strong spatial gradients

Sierra Nevada - Spain
Picture: Wikipedia



Orographic rainfall:
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And impacts rainfall statistics: 
   → Rainfall statistics vary in space (occurrence, intensity, dependencies)
   → Not simply related to covariates (e.g., elevation, slope, weather)

 Introduction (1/5): orographic rainfall leads to strong spatial gradients

Sierra Nevada - Spain
Picture: Wikipedia
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Hawai‘i is a textbook study area for orographic rainfall:

Leeward Kohala 
 (300 mm/year)

 Introduction (2/5): the example of Hawai‘i Island

Mauna Kea
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Mauna Loa
4170 m
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Windward Kohala 
  (4000 mm/year)

Climatological rainfall maps:

→ Long time series of rainfall observations (rain gauges only)

→ Vegetation proxies to complement direct observations in poorly gauged areas 

 Introduction (3/5): rainfall mapping in Hawai‘i

Picture : www.hawaii.edu/climate-data-portal
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Windward Kohala 
  (4000 mm/year)

Monthly and daily rainfall maps:

→ Input data = rain gauge observations + climatological maps

→ Climatologically aided interpolation (i.e., KED with drift from the climatology) 

 Introduction (4/5): rainfall mapping in Hawai‘i

Picture : www.hawaii.edu/climate-data-portal
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Improve uncertainty quantification
   → Replace Kriging by conditional simulations 

Account for non-stationary rain statistics
   → Spatial model accounting for non-stationary marginals and dependencies

   → Parameter inference from rain gauge observations (spatially sparse)
 
Condition daily rainfall maps to monthly totals
   → Better capture the spatial gradients in poorly gauged areas

   → Ensure consistency between monthly and daily maps

 

 Introduction (5/5): objectives of this work
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Orographic effects depend on atmospheric conditions:
   → Days with similar rainfall are pooled into rain types and processed separately.

   → One [purely spatial] stochastic model is set-up for each rain type.

   

 

 Rainfall model (1/5): rain types

 Trade wind conditions (used for illustration) 
            => shallow convection & distinctive orographic effects
            => around 50% of the dataset 

6 /18



  

Trans-Gaussian geostatistics split the rain signal (R) in two components:
               Y ~ MVN(0,1,CY)          and           R = ψ(Y)

 Rainfall model (2/5): trans-Gaussian Random Field

Transform function:
Models rainfall occurrence and intensity

Latent field:
Models spatial dependencies

through the covariance function CY
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Trans-Gaussian geostatistics split the rain signal (R) in two components:
               Y ~ MVN(0,1,CY)          and           R = ψ(Y)

 Rainfall model (2/5): trans-Gaussian Random Field

Transform function:
Models rainfall occurrence and intensity

Latent field:
Models spatial dependencies

through the covariance function CY

CY  parameterized by
 a Matérn covariance function

ψ  parameterized by the mixture of
 an atom of zeros (truncation) 

and a Gamma distribution
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Non-stationary model to capture the spatial variation of rain statistics:
 

=> Model parameters are made location-dependent:
    → ψ => ψs   and   CY  =>  CYS  (with s the location of interest)

 → CYS  requires a valid model of non-stationary covariance
    

     

 Rainfall model (3/5): making the model non-stationary

Stationary model Non-stationary ψ 

High intensity        Low intensity

Non-stationary ψ and CY 
Vertical 
patterns

[Paciorek & Schervish, 2006, spatial modelling using a new class of non-stationary covariance functions, 
Environmetric, 17:483-506]
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Non-stationary model to capture the spatial variation of rain statistics:
 

=> Model parameters are made location-dependent:
    → ψ => ψs   and   CY  =>  CYS  (with s the location of interest)

 → CYS  requires a valid model of non-stationary covariance
    

     

 Rainfall model (3/5): making the model non-stationary

[Paciorek & Schervish, 2006, spatial modelling using a new class of non-stationary covariance functions, 
Environmetric, 17:483-506]
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 Rainfall model (4/5): parameter estimation

Parameters of the covariance CY

Model parameters are estimated by likelihood maximization
    → Overall 9 parameters

Estimation of model parameters from sparse observations
    → Marginal distribution (ψs): estimation at gauge locations + Ordinary Kriging
    → Covariance function (CYS): estimation within climate division + Spline interp.

Parameters of the marginal distr. ψ
a0 ≈ proba. dry day

k ≈ proba. strong rain θ ≈ rain intensity 

Hawai‘i climate divisions
Background : 

ν ≈ short lag variability

On top:
Ellipses of anisotropy ≈ correlation distance 11/18

Example for RainType 5



  

(1) Unconditional simulation of the latent field (Y)

      + Transformation of the latent field into rain intensities:

      = Stochastic rainfall generation

 Rainfall model (5/5): simulation (unconditional)

dots = observations; background maps = simulations

Statistics of the marginal distribution Statistics of the spatial structure

Rain occurrence (%) Mean rainfall (mm/day) q90% rainfall (mm/day) Correlation with point *
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Example for RainType 5



  

(1) Unconditional simulation of the latent field (Y)

(2) Simulation of censored latent values (dry obs.) by Gibbs sampler

(3) Conditioning by conditional Kriging

(4) Transformation of the latent field into rain intensities:

 Rainfall model (5/5): simulation (conditional)

Estimated rainfall [q50% sim.] (mm/day) Uncertainty [1σ]  (mm/day) Probabilistic forecast [loc. *]

* *
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Example for RainType 5



  

Uncertainties increase with the distance to rain gauges
   → Large uncertainties in poorly gauged areas and at the edges of the domain

→ Spatial gradients may be over-smoothed

Use the spatial information from monthly maps to constrain the daily maps 

 Conditioning to monthly totals (1/4): motivation

Estimated rainfall [q50% sim.] (mm/day) Uncertainty [1σ]  (mm/day)

* *
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Example for RainType 5



  

Challenge: different spatial models (i.e., rain types) during the same month
=> Metropolis within Gibbs
   (1) Select target locations and initialize their latent values
   (2) For each location and each day: 
        → Gibbs sampling conditional to (i) latent obs. and (ii) simu. at other target locations
         → Transformation to get daily rainfall simulation at target location         
         → Acceptance following a Metropolis rule applied to monthly sum 
  

   (3) Iterate (2) for warm-up period + sampling daily rainfall at target locations 

Other problem: low computational efficiency  
=>  Metropolis within Gibbs to simulate a small set of ‘virtual stations’ (≈100)
    + Conditional simulation using (i) daily rain gauge observations
                                                       (ii) virtual stations pseudo-observations

 Conditioning to monthly totals (2/4): method
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 Conditioning to monthly totals (3/4): results - impact on monthly totals

January 2018

o  Rain gauge
+  Virtual station
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 Conditioning to monthly totals (4/4): results - impact on daily maps

Improve gradients also in 
daily rainfall maps

Can simulate daily maximum 
between rain gauges
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 Conclusion & perspectives:

Non-stationary trans-Gaussian geostatistics:
    → Reproduce the statistical signature of daily rainfall in mountains
    → Applications: (i) stochastic rainfall generator, (ii) rainfall mapping 

Conditioning to monthly totals:
    → Ensures consistency between rainfall maps at different time scales
    → Improves the mapping of spatial gradients at the daily scale 

Next step: non-stationary space-time model for sub-daily orographic rainfall
    → Non-stationary space-time covariance functions (cf. presentation Denis)

    → Diurnal cycle
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                                  Thank you for your attention :-) 
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