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Compound event definition

Definition

A compound event is the combination of multiple drivers and/or hazards that contributes
to societal or environmental risk (Zscheischler et al., 2020)
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Projecting the evolution of the frequency of compound events
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The Seine/Loire compound event

Spatial compound event Huge floods of Seine and
Loire in June 2016 (Mohr et al., 2022)

The Antecedent Precipitation Index (API) (Kohler
and Linsley, 1951) is used to model the event:

APIj =
N∑
i=1

Precipj−i ∗ k i−1

with k = 0.88 and N = 17

Daily precipitation are averaged over the Seine and the
Loire watersheds for May and June between 1992 and
2021 (on ERA5 1°x1° grid)
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The German/Belgium compound event

Preconditioned compound event Extremely
heavy precipitation after moderate precipitation
lead to a massive flood of the Ahr river in July
2021 van Oldenborgh et al. (2016)

The daily precipitation (TP) and the API are used
to model the event. Here the API (with k = 0.9
and N = 30) is used as a proxy for soil moisture

Daily precipitation are averaged over the shown
area for June, July and August between 1992 and
2021 (on ERA5 1°x1° grid)
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Generalized Pareto Distribution (GPD)

The cumulative distribution function (cdf) of a Generalized Pareto Distribution (GPD)
with location µ ∈ R, scale σ > 0, and shape ξ ∈ R is defined as:

Cumulative distribution function of the GPD

Gξ,µ,σ(x) =

{
1−

(
1 + ξ x−µ

σ

)− 1
ξ if ξ ̸= 0,

1− exp
(
− x−µ

σ

)
if ξ = 0,

where x ≥ µ
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Extended Generalized Pareto Distribution (EGPD)

The Extended Generalized Pareto Distribution (EGPD) (Naveau et al., 2016) allows a
complete modeling of the distribution, eg:

Cumulative distribution function of the EGPD

f (G (x |ξ, σ)) = G (x |ξ, σ)κ, with κ > 0

where G is the GPD cumulative distribution function (ξ > −0.5).

▶ There exists other forms for f .
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Extremal index

As the API is by construction a strongly auto-correlated variable, declustering is needed and
the strength of this auto-correlation can be represented by the extremal index θ:

▶ Consider an i.i.d. sample X̃i following the same distribution as Xi .

▶ Mn = maxi (Xi ) with CDF Fmax and M̃n = maxi (X̃i ) with CDF F̃max .

▶ The extremal index is the real number 0 < θ ≤ 1

Fmax = F̃ θ
max .

▶ It is estimated in practice with the Dgaps algorithm (Holešovskỳ and Fusek, 2020)

▶ The extremal index can be extended to higher dimensions
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Return period of auto-correlated variable

Return level and return period

The return period T is the expected waiting time between two exceedances above a “return
level” xT .

Considering that Fmax(x) = IP(maxi (Xi ) ≤ x) ≃ FNθ(x), with N being the number of Xi

per year, one thus gets:

T =
1

1− Fmax(xT )
≃ 1

1− FNθ(xT )
⇔ T ≃ 1

NθIP (X > xT )
,

where θ is the extremal index.
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Copula modeling for extreme values

Theorem (Sklar, 1959)

Let F be the multivariate cumulative distribution function of a random vector (X1,X2).
Then there exists a function C : [0, 1]2 → [0, 1] called a copula defined by:

F (x1, x2) = C (F1(x1),F2(x2)).

If the F1, ...,Fd are continuous, the copula C is unique.

This allows us to propose the following approach for extreme values:

1. Propose a univariate extreme model for the marginals (GPD)

2. Reduce the tail of the distributions to uniform margins

3. Determine the copula
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Bivariate data and copula selection

The GPD and copula
parameters are estimated with
maximum likelihood.

The best copula is selected
among a few parametric families
according to the Bayesian
Information Criteria (BIC).
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Multivariate Generalized Pareto Distribution (MGPD)

▶ The Extended Generalized
Pareto Distribution
(EGPD) is used to model
the complete distribution.

▶ Thanks to the EGPD, one
can construct XE the
exponential transform of X
and define for uE a high
enough threshold:

Z := XE−uE | XE ≰ uE ∼ MGPD(0, 1)
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Multivariate Generalized Pareto Distribution (MGPD)

▶ Rootzén et al. (2018) established that, if
Z follows an unitary MGPD, their exists
a random vector T such that:

Z law
= E + T −max(T )

where E follows an unitary exponential
distribution, independent from T .
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Delta decomposition for bivariate GPD (biGPD)

In a bivariate context, Legrand et al.
(2023) defined the random variable
∆ = Z1 − Z2 = T1 − T2.

Z1 = E +∆1∆<0,

Z2 = E −∆1∆≥0.

For x1, x2 ≥ u1, u2, IP (X1 > x1,X2 > x2)
can be expressed using the empirical
CDF of ∆ and numerical integration.
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Protocol for statistical simulations

Objective: compare the two approaches (copula and biGPD) =⇒ statistical simulations

▶ 30 x 61 points are simulated following a copula (Gaussian, Gumbel or Joe)

▶ The univariate distribution are transformed to EGPDs

▶ Return periods and associated probabilities are calculated with the two approaches

▶ 150 draws are performed =⇒ boxplots to represent the uncertainties

▶ Exact values are known and represented by dashed lines
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Statistical simulations without temporal correlation
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Statistical simulations with temporal correlation
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Our new contribution: non-concurrent compound event

Definition

non-concurrent compound event: a compound event where the composing variables
reach extreme values not necessarily at the same time step, within a defined range.
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Bivariate return period for non-concurrent compound events

η(x1, x2) gives the number of the first block of size h where both x1 and x2 are exceeded.

Definition

The non-concurrent bivariate return period T associated to the return level vector
(x1,T , x2,T ) is such that:

IP

[
η(x1,T , x2,T ) ≤

NT

h

]
:= 1− e−1 ≃ 0.63. (2)
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Data and materials

1. All the considered runs follow the ssp5-8.5 scenario

2. We define 4 climatic periods of 30 years each: 1992-2021, 2022-2051, 2041-2070,
2071-2100

3. We apply bias correction algorithms on a selection of 10 GCMs: BCC, CanESM5,
CNRM-CM6, CNRM-CM6-HR, CNRM-ESM2, INM-CM4, INM-CM5, IPSL, MIROC6,
MRI-ESM2

4. 6 bias correction methods are compared: no correction, CDF-t, dOTC, R2D2 v2
(with a bivariate pivot), R2D2 with a pivot on the first variable and R2D2 with a pivot
on the second variable
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Multivariate bias correction algorithms

1. R2D2 (rank resampling) (Vrac and Thao, 2020):

Univariate bias correction (CDF-t)
Rank analogues: associate, in the rank space, points from the simulated data to the
reference data
Replace the simulated values by the ones corresponding to the rank of the analogues
The reference for the rank analogy (the pivot) can be one variable or several

2. dOTC (optimal transport) (Robin et al., 2019):

Multivariate optimal transport between the reference data and the model data of the
reference period
Multivariate optimal transport between the model data of the reference period and the
projection period
The two projection plans are combined to correct the projected data of the model
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Bivariate return periods for Seine/Loire event with biGPD

27 / 30



Context Univariate analysis Bivariate analysis Return periods Projections with bias correction References

Bivariate return periods for Seine/Loire event with biGPD
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Bivariate IDF-like curve for Seine/Loire event with biGPD

IDF-like function between a
value x , a time t and the
probability p to exceed this
value before this time:

p(x , t) = 1− F tNθ(x).
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Bivariate return periods for Germany/Belgium event with copula
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Conclusion

▶ Fast and efficient framework to project frequency evolution of compound rain events
▶ New contributions:

Non-parametric modeling with bivariate GPD
Definition of non-concurrence and analytic formulas for the return periods

▶ Climate models have shown statistical biases on extreme events =⇒ bias correction
necessary

▶ Analysis of the bias correction methods and their variability =⇒ starting soon

▶ Application of the framework to other types of compound events is planned
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