
What’s new in gstlearn – Software Engineering
Séminaire Géolearning

Pierre Guillou
Fréjus, le 3 avril 2025

Mines Paris, PSL Research Université



Plan

1 GitHub CI/CD

2 Python Packaging

3 Serialization

4 C++ Standard Upgrade

5 Performance improvements

6 Debugging with Address Sanitizer

7 Conclusion

2/16



GitHub CI/CD



Continuous Integration / Continuous Delivery with GitHub Actions

• build gstlearn & execute tests every time a change is proposed
• on different platforms : Ubuntu, macOS, Windows
• ∼400 tests (C++, R, Python)

• ensure there is no (visible) regression
• also build Python, R packages for releases

• required dependencies =⇒ static libraries

• always evolving environment =⇒ complex maintenance work

3/16



CI/CD improvements

Upgrading the workflows

• Latest macOS, Python
• Testing before publishing packages
• Use several packaging systems

Ubuntu apt, pip (pypi)
macOS brew, pip (pypi)

Windows vcpkg, pixi (conda), MSYS pacman

Caching binary objects

• ccache / sccache used with GitHub cache
• store binary object files (source code, compile command)
• 6= partial compilation

• faster to test results

4/16



Python Packaging



Switching to pyproject.toml

• evolutions in Python packaging metadata format these last years
• switching from setup.py to pyproject.toml

• setup.py is imperative
• pyproject.toml is declarative, more generic
• pyproject.toml supports more tools

5/16



NumPy 2.0

NumPy 2.0 released in June 2024

• a compile-time and run-time dependency of gstlearn
• 2.0 has breaking changes incompatible with 1.*

• building gstlearn Python packages with 1.* won’t work with 2.0
• however, gstlearn packages built with 2.0 are compatible with 1.*

• a few tries to get the compatible NumPy versions
• "numpy>=1.24,<@Python3_NumPy_NEXT_MAJOR@"

6/16



Python package optional dependencies

• the gstlearn Python package has a lot of dependencies
NumPy scipy matplotlib pandas
plotly shapely geopandas

• ∼100 MB dependencies to download
• only NumPy is required, everything else is optional
• optional dependency groups have been created

• plot : geopandas, matplotlib, plotly and shapely
• conv : pandas and scipy
• pip install gstlearn : only NumPy
• to download everything : pip install gstlearn[all]

• now : gstlearn + NumPy =⇒ 20 MB

7/16



Serialization



Serialization

Serialization Object in memory −→ File
Deserialization File −→ object in memory

gstlearn : Neutral Files

• text serialization
• quite slow
• hard to evolve

• any change in the format makes old files invalid

8/16



Binary serialization with HDF5

Hierarchical Data Format

• file format to store scientific datasets
• C library with C++ interface
• binary storage
• self-documented

9/16



HDF5 PoC in gstlearn

HDF5 vs Neutral Files

• for now only implemented for DbGrid
• x30 faster than Neutral Files
• TODO

• references : data structures sharing pointers
• compression? binary files can be larger than text ones
• implement for all other data structures @NDesassis

10/16



C++ Standard Upgrade



New C++ features

C++ standards

• A new C++ standard every 3 years : 2011, 2014, 2017, 2020...
• New standards bring new stuff
• Old standards might become unsupported by dependencies
• New-ish standards only supported by new-ish compilers...

gstlearn : Switch from C++11 to C++20

• Filesystem Library
• std::span, std::string_view
• std::optional, std::variant

11/16



Performance improvements



Analyze memory allocations with Heaptrack

12/16



Results

gstlearn 1.3.2 (July 2024) dev (April 2025)

test_SPDEAPI
Exec time (s) 16.1 5.8
#Allocs 86 706 557 7 230 865

bench_Db
Exec time (s) 0.4 0.2
#Allocs 6 003 667 3 269

bench_Kriging3DU
Exec time (s) 8.2 10.8
#Allocs 29 007 986 24 004 051

bench_Tree
Exec time (s) 99 17

13/16



Debugging with Address Sanitizer



Concept

ASAN

• A compiler extension
• Helps identify memory bugs

• out-of-bound accesses
• ”use-after-free”
• ”double free”

• Use the -fsanitize=address compiler/linker flag
• debug info provide line numbers : -g

14/16



Application

ASAN for gstlearn

• CMake option to build the library
• One CI job runs tests with it
• Helps debugging
• Other available sanitizers

• LeakSanitizer
• ThreadSanitizer

15/16



Conclusion



Conclusion

End-user improvements

• Smaller Python packages
• Compatibility with NumPy >= 2.0
• Faster serialization
• Better overall performance
• Robustness

Developer Experience

• GitHub Actions workflows
• Debugging & profiling Tools

Perspectives

• Parallelism?
• Coverage? 16/16



Questions?

16/16



Example : A use-after-free

1 #include <iostream>
2 #include <vector>
3

4 int main(void) {
5 std::vector<int> a(2); // allocate a int buffer
6 int *b = a.data(); // take a pointer to the buffer
7 a.resize(100); // realloc the buffer -> b is invalid
8 std::cout << b[0] << '\n'; // dereference b -> use-after-free
9 return 0;

10 }



Example : ASAN output

==38392==ERROR: AddressSanitizer: heap-use-after-free
READ of size 4

#0 0x5bc832a683bf in main uaf.cpp:8

located 0 bytes inside of 8-byte region
freed by thread T0 here:

#0 ...
#6 0x5bc832a68385 in main uaf.cpp:7

previously allocated by thread T0 here:
#0 ...
#7 0x5bc832a6833f in main uaf.cpp:5



Alternative : NetCDF 4

• competitor binary format
• based on HDF5
• C library with C++ interface

• same complexity than HDF5
• no references

• harder to build
• need HDF5 + dependencies, NetCDF C and NetCDF C++ wrapper


	GitHub CI/CD
	Python Packaging
	Serialization
	C++ Standard Upgrade
	Performance improvements
	Debugging with Address Sanitizer
	Conclusion
	Annexe

