Input-to-output propagation of extreme events

Thomas Opitz BioSP, INRAE, Avignon, France

Séminaire Geolearning

Fréjus 31 mars – 3 avril 2025

Input-to-output propagation

$$\mathbf{Y} = f(\mathbf{X})$$

- Vector of (simple) inputs $\mathbf{X} = (X_1, \dots, X_m)^T$, e.g. white noise
- Vector of (complex) outputs $\mathbf{Y} = (Y_1, \dots, Y_n)^T$
- \bullet Transformation by algorithm f, e.g. multi-layer neural network

What is the univariate and joint tail behavior of Y given the distribution of X?

Common elementary operations in generative models

Based on m independent stochastic inputs X_1, \ldots, X_m , we can consider:

- (Weighted) sums: $\sum_{j=1}^{m} \omega_j X_j$
- (Weighted) maxima: $\max_{i=1}^{m} \omega_i X_i$
- Threshold excess: $(X_1 u)_+$
- Mixtures: X_J , $J \sim \text{Unif}(1, \dots, m)$

Plain vanilla neural network layer: weighted sum and thresholding (ReLU activation)

$$Y_i = \left(\sum_{j=1}^m \omega_j X_j + b_i\right)_+$$

with weights ω_i and bias b_i

The realms of light and heavy tails

Random variable $X \sim F$ Distribution function $F(x) = \Pr(X \le x)$ Survival function $\overline{F}(x) = 1 - F(x)$

Heavy tails

F is heavy-tailed if

$$\exp(\lambda x) \times \overline{F}(x) \to \infty$$
, $x \to \infty$, for all $\lambda > 0$

• Exponential-tailed distributions (within the light-tailed realm) form the frontier

$$\frac{F(t+x)}{F(t)} \to \exp(-\alpha x), \quad t \to \infty \quad (\textit{rate } \alpha)$$

• {Interesting heavy-tailed distributions} = {Subexponential distributions} (where F is subexponential if $\overline{F \star F}(x)/\overline{F}(x) \to 2, \ x \to \infty$) including {Regularly varying distributions with index $\alpha > 0$ } = {Power laws} = { $F(\exp(\cdot))$, F exponential-tailed with rate α }

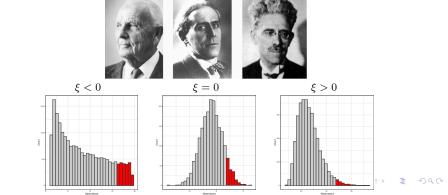
Short, light, heavy tails

Extreme-Value Theory suggests classification based on the tail index

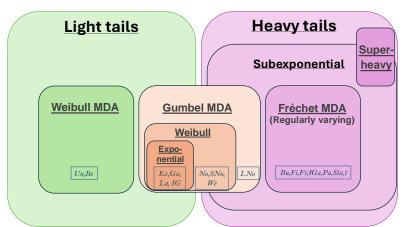
Tail index

The tail index, often denoted ξ (or γ), describes the shape of the distribution tail

- $\xi > 0$: heavy tails (power-law limit) Fréchet domain of attraction
- $\xi = 0$: light tails (exponential limit) Gumbel domain of attraction
- ullet $\xi < 0$: short tails (bounded limit) Weibull domain of attraction



General overview of common univariate tail classes



Be-Beta; Bu-Burr; Ex-Exponential; Fi-Fisher; Fr-Fréchet; Ga-Gamma; IG-Inverse-Gaussian; IGa-Inverse-Gamma; La-Laplace; LNo-Log-Normal; No-Normal; Pa-Pareto: SNo-Slew-Normal: Sta-Stable: t-student-t; Un-Uniform: We-Weibull

Focus on linear propagation from inputs to outputs

Consider the linear system

$$Y_1 = b_1 + \omega_{11}X_1 + \dots + \omega_{m1}X_m$$

$$Y_2 = b_2 + \omega_{12}X_1 + \dots + \omega_{m2}X_m$$

$$\dots = \dots$$

$$Y_n = b_n + \omega_{1n}X_1 + \dots + \omega_{mn}X_m$$

In matrix form: $Y = b + \Omega X$

How is the tail behavior of Y related to the tail behavior of X?

- Univariate tails: behavior of $\Pr(Y_i > y)$ for large y? \Rightarrow Strongly determined by heaviest tail among $\operatorname{sign}(\omega_{j,i}X_j)\,\omega_{j,i}X_j,\,j=1,\ldots,m$
- Joint (esp. bivariate) tails: what behavior of $Pr(Y_{i_1} > y, Y_{y_2} > y)$ for large y?

Tail correlation (Extremogram)

For any two random variables $X_1 \sim F_1, X_2 \sim F_2$, consider the conditional probability

$$\chi_{12}(u) = \Pr\{F_2(X_2) > u \mid F_1(X_1) > u\} = \frac{\Pr\{F_2(X_2) > u, F_1(X_1) > u\}}{\Pr\{F_1(X_1) > u\}}, \quad u \in (0, 1).$$

The following limit χ_{12} (if it exists) is called **tail correlation** (or **extremogram**):

$$\chi_{12}(\textit{u}) \rightarrow \chi_{12} \in [0,1], \quad \textit{u} \rightarrow 1,$$

- Asymptotic dependence if $\chi_{12} > 0$ (\sim simultaneous extremes)
- Asymptotic independence if $\chi_{12} = 0$

Numerical illustration of tail correlations

Consider the bivariate system

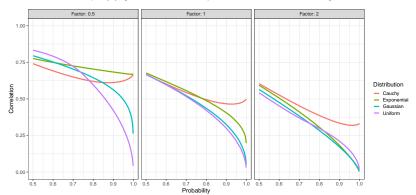
$$Y_1 = X_0 + \omega \times X_1$$

$$Y_1 = X_0 + \omega \times X_2$$

with

- i.i.d. distribution of X_0, X_1, X_2 among $\{Unif(0,1), \mathcal{N}(0,1), Exp(1), Cauchy(1)\}$
- $\omega \in \{0.5, 1, 2\}$

Tail correlations $\chi_{12}(u)$ (here calculated by Monte–Carlo simulation):



Tail correlation in regularly varying setting

Consider $X_j \stackrel{\text{ind.}}{\sim} F_j \in RV_\alpha$ such that $n \Pr(X_j/b_n > x) \to x^{-\alpha}$.

 \land Lighter-tailed components $(n \Pr(X_j/b_n > x) \to 0)$ never contribute to asymptotics!

$$Y_1 = \omega_{11}X_1 + \ldots + \omega_{1J}X_J$$

$$Y_2 = \omega_{21}X_1 + \ldots + \omega_{2J}X_J$$

Result

Suppose that $\omega_{i,j} \geq 0$ and $\max_{j=1}^J \omega_{i,j} > 0$ for i=1,2. Then, the variables Y_1 and Y_2 are asymptotically dependent with

$$\chi_{12} = \sum_{j=1}^J \min \left(\frac{\omega_{1,j}^\alpha}{\sum_{k=1}^J \omega_{1,k}^\alpha}, \frac{\omega_{2,j}^\alpha}{\sum_{k=1}^J \omega_{2,k}^\alpha} \right).$$

- ▲ Biases and thresholding (e.g. ReLU activation) do not change results (if we combine several NN layers)
- \wedge More generally, the bulk of the distribution F_i has no influence

Tail correlation in exponential-tailed setting

Consider $X_j \stackrel{\text{ind.}}{\sim} F_j \in \text{ET}_{\beta_j}$ (where $\beta_j = \infty$ if tail is lighter than exponential).

$$Y_1 = \omega_{11}X_1 + \ldots + \omega_{1J}X_J$$

$$Y_2 = \omega_{21}X_1 + \ldots + \omega_{2J}X_J,$$

- $\tilde{\omega}_{ij} = \omega_{ij,+}/\beta_j = \text{scale parameter (i.e., inverse rate) of } \omega_{ij}X_j$.
- Maximum scales $\omega_i^{\star} = \max_i \tilde{\omega}_{ii}$, i = 1, 2
- Indices where the maximum is realized: $I_i = \{j : \tilde{\omega}_{ij} = \omega_i^*\}$.

Results

• Suppose that $I_1=I_2$ and $\omega_i^\star>0$, i=1,2. Then, the variables Y_1 and Y_2 are asymptotically dependent with

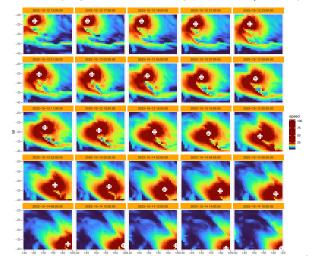
$$\chi_{12} = \mathbb{E}\left[\min\left(\exp(\tilde{Y}_1)/m_2, \exp(\tilde{Y}_2)/m_2\right)\right] > 0,$$

where
$$\tilde{Y}_i = \sum_{i \notin I_i} X_j \omega_{ij} / \omega_i^*$$
 and $m_i = \mathbb{E}[\exp(\tilde{Y}_i)], i = 1, 2.$

- **2** If $I_1 \cap I_2 = \emptyset$, then $\chi_{12} = 0$.

Example: Modeling high and low extremes with a novel dynamic spatio-temporal model

- Work in progress...
- Bayesian dynamic spatiotemporal models
- Joint work with Myungsoo Yoo, Likun Zhang, Chris Wikle (University of Missouri)



Bayesian dynamic spatiotemporal models

Observation model:

$$\mathbf{y}_t = \mathbf{\Phi} \mathbf{\alpha}_t + \boldsymbol{\varepsilon}_t, \quad \varepsilon_{t,i} \overset{\mathsf{ind.}}{\sim} \mathcal{N}(0, \sigma^2)$$

- Observations $\mathbf{y}_t = (y_t(s_1), \dots, y_t(s_n))^T$
- $\Phi = (\Phi_{i,j}), i = 1, \dots, n, j = 1, \dots, m$, with basis function values $\Phi_{i,j} = \varphi_i(s_i)$
- We can have $n \gg m$

Latent process model with dynamical evolution via autoregression:

$$\alpha_t = M\alpha_{t-1} + \omega_t$$

- Transition matrix M (autoregression, dilation, translation...)
- Classical dynamic models have Gaussian innovations $\omega_t \sim \mathcal{N}(\mathbf{0}, \sigma_\omega I_m)$
- Estimation of ω_t , M and hyperparameters using MCMC

Goals:

- Regime-switching latent process for detecting extremes
- Asymptotic dependence around locally extreme states
- Theoretical characterization of spatial and temporal dependence

Conclusion

• Work in progress...

- Next steps:
 - 1 A catalog of univariate and joint tail behavior for elementary operations
 - 2 Tail behavior when composing several elementary operations
 - 3 Results for specific models (e.g. dynamic models as outlined here)
 - 4 Construct new generative models (e.g. with heavy tails)