1/14

Input-to-output propagation of extreme events

Thomas Opitz
BioSP, INRAE, Avignon, France

Séminaire Geolearning
Fréjus

31 mars — 3 avril 2025

GEOLEARNING

CHAIRE /// Data Science for the Environment

( ANDRA BNP PARIBAS
PSL%* o - .

INRA ,famseen, QR SCOR



Input-to-output propagation

Y = f(X)

® Vector of (simple) inputs X = (X1,...,Xm)7, e.g. white noise
® Vector of (complex) outputs Y= (Y1,...,Y,)T

® Transformation by algorithm f, e.g. multi-layer neural network

What is the univariate and joint tail behavior of Y given the distribution of X?
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Common elementary operations in generative models

Based on m independent stochastic inputs X1, ..., Xmn, we can consider:
® (Weighted) sums: 377 | w;X;
® (Weighted) maxima: max["; w;X;
® Threshold excess: (X1 —u),
® Mixtures: X, J ~ Unif(1,...,m)

Plain vanilla neural network layer: weighted sum and thresholding (ReLU activation)

m
Yi= ijxj+ b;
=1 N

with weights w; and bias b;
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The realms of light and heavy tails

Random variable X ~ F
Distribution function F(x) = Pr(X < x)
Survival function F(x) =1 — F(x)

Heavy tails
F is heavy-tailed if

exp(Ax) X F(x) = 00, x— o0, forallA>0

® Exponential-tailed distributions (within the light-tailed realm) form the frontier

F(t
% — exp(—ax), t— oo (rate )
® {Interesting heavy-tailed distributions} = {Subexponential distributions}
(where F is subexponential if F* F(x)/F(x) = 2, x — 00)
including {Regularly varying distributions with index oo > 0}
= {Power laws} = {F(exp(-)), F exponential-tailed with rate o}
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Short, light, heavy tails
Extreme-Value Theory suggests classification based on the tail index
Tail index
The tail index, often denoted £ (or «), describes the shape of the distribution tail
® £ >0 : heavy tails (power-law limit) — Fréchet domain of attraction
® ¢ =0 : light tails (exponential limit) — Gumbel domain of attraction

® £ <0 : short tails (bounded limit) — Weibull domain of attraction

£E>0
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General overview of common univariate tail classes

Super-
Subexponential |heavy

7 Lighttails ( Heavytails

Weibull MDA Gumbel MDA Fréchet MDA

(Regularly varying)

Weibull

Expo-
nential

Ez,Ga, No,SNo, Bu,Fi,Fr,IGa,Pa,Sta,t
La, IG We

Be-Beta; Bu-Burr; Ex-Exponential; Fi-Fisher; Fr—Fréchet; Ga-Gamma; IG-Inverse-Gaussian; IGa-Inverse-Gamma; La-Laplace; LNo-Log-Normal; No-Normal;
Pa-Pareto; SNo-Skew-Normal; Sta-Stable; t-student-t; Un—Uniform; We—Weibull

/\ Gumbel domain of attraction is very large
(e.g., it includes both the Normal and the Lognormal distribution)



Focus on linear propagation from inputs to outputs

Consider the linear system

Yi=b1 +wni X1 +... +wmXm
Yo = bo + w12 X1 + ... +wmeXm

Yo =bp+winXi + ...+ wmnXm

In matrix form: Y=b+ QX

How is the tail behavior of Y related to the tail behavior of X ?

® Univariate tails: behavior of Pr(Y; > y) for large y?
= Strongly determined by heaviest tail among sign (w;,iXj) w;iX;, j=1,...,m

® Joint (esp. bivariate) tails: what behavior of Pr(Yj, >y, Y}, > y) for large y?
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Tail correlation (Extremogram)

For any two random variables X; ~ F1, Xa ~ F2, consider the conditional probability

Pr{F2(X2) > u, F1(X1) > u}
Pr{Fi(X1) > u}

x12(u) = Pr{F2(X2) > u| F(X1) > u} = , u€(0,1).

The following limit x12 (if it exists) is called tail correlation (or extremogram):

x12(u) = x12 € [0,1], u— 1,

® Asymptotic dependence if x12 > 0 (~ simultaneous extremes)

® Asymptotic independence if x12 =0
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Numerical illustration of tail correlations
Consider the bivariate system

Y =Xo+wx Xy
Y1 =Xo+wx Xo
with
® ii.d. distribution of Xp, X1, X2 among {Unif(0, 1), N'(0, 1), Exp(1), Cauchy(1)}
* we{0.5,1,2}

Tail correlations x12(u) (here calculated by Monte—Carlo simulation):
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Tail correlation in regularly varying setting

Consider X; ind: Fj € RV4 such that n Pr(Xj/b, > x) — x~ .

/\ Lighter-tailed components (n Pr(X;j/b, > x) — 0) never contribute to asymptotics!
Y1 =wiiXi+.. twiXy
Yo = w21 X1 + ... + we Xy,

Result

Suppose that w;; > 0 and maxf:1 wij > 0 for i=1,2. Then, the variables Y; and Y2
are asymptotically dependent with

J a a
] w1, “2,j
X12 = E min .

J ]
j=1 Zk:ﬂ”fk D=1 WSk

/\ Biases and thresholding (e.g. ReLU activation) do not change results
(if we combine several NN layers)

/\ More generally, the bulk of the distribution F; has no influence



_ Tail correlation in exponential-tailed setting
Consider X; ind. Fj € ETg, (where B; = oo if tail is lighter than exponential).

Yi =wii X1 + ... +wiX)
Yo = wo1 X1 + ... +way Xy,

® Qjj = wjj,+/Bj = scale parameter (i.e., inverse rate) of w;iXj.
® Maximum scales w? = max;@;;, i=1,2
® Indices where the maximum is realized: ; = {j: & = w}}.

Results

® Suppose that 1 = /2 and w’ > 0, i=1,2. Then, the variables Y1 and Y2 are
asymptotically dependent with

x12 = E [min (exp(gﬁ)/mg,exp(?g)/mg)] >0,
where Y; = > Xjwij/wi and m; = E[exp(Y})], i=1,2.
@ If LNl =0, then x12 = 0.

/\ Biases do not change the result
(if we combine several NN layers)

/\ Intermediate cases between 1. and 2. are more involved
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® Work in progress

Example: Modeling high and low extremes

with a novel dynamic spatio-temporal model
® Bayesian dynamic spatiotemporal models

® Joint work with Myungsoo Yoo, Likun Zhang, Chris Wikle (University of Missouri)
o
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Bayesian dynamic spatiotemporal models

Observation model:

yi=Por+er, ey ind. N(0, 02)

® Observations yt = (ye(s1),-- -, ye(sn)) T
¢ ®=(P;;),i=1,...,n j=1,...,m, with basis function values ®; ; = ¢;(s;)

® We can have n> m

Latent process model with dynamical evolution via autoregression:

ar = Mar—1 + wt

® Transition matrix M (autoregression, dilation, translation...)
® Classical dynamic models have Gaussian innovations w; ~ N (0, 0 /m)
® Estimation of w:, M and hyperparameters using MCMC
Goals :
® Regime-switching latent process for detecting extremes
® Asymptotic dependence around locally extreme states

® Theoretical characterization of spatial and temporal dependence



Conclusion

® Work in progress...

® Next steps:
@ A catalog of univariate and joint tail behavior for elementary operations
® Tail behavior when composing several elementary operations
© Results for specific models (e.g. dynamic models as outlined here)

© Construct new generative models (e.g. with heavy tails)
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