Generation of synthetic remote sensing images with ultrasimple but ultrafast approaches

Gregoire Mariethoz, University of Lausanne, Switzerland Workshop Geolearning, Fréjus, 2 April 2025

Allez Denis!

A wealth of data – but it is never enough

We would like to measure everything, everywhere, all the time. It is impossible.

eesa

0 days 00 hours 08 minutes Sentinel-2 constellation: summer solstice

Generating data: why?

We have lots of data, but need to generate even more!

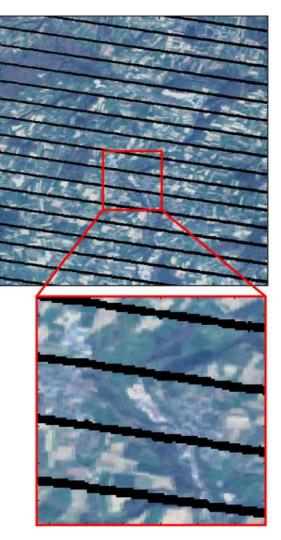
Specific type of problem suited to data-driven models: machine learning, geostatistics (parametric/non-parametric).

We may need to generate data for:

- Filling spatial gaps: <u>interpolation</u> → Multiple-point geostatistics ♥
- Uninformed scales: <u>downscaling</u>
- Recovering missing colors: <u>colorization</u> (=multivariate)
- Generating <u>uninformed epochs</u> (past/future) (=spatio-temporal)

Generating spatial data (with MPS)

Application to Landsat 7 SLC-off images

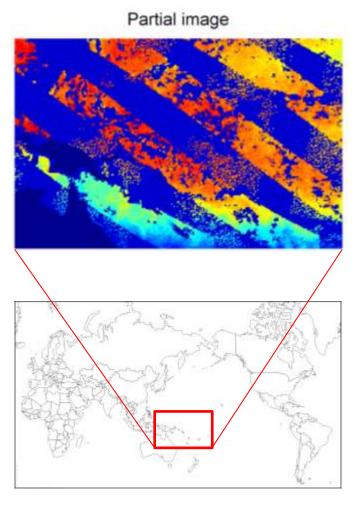


Yin, G., et al. (2017). "Gap-filling of landsat 7 imagery using the direct sampling method." <u>Remote Sensing **9**(1).</u>

Gap-filling (pour Thomas)

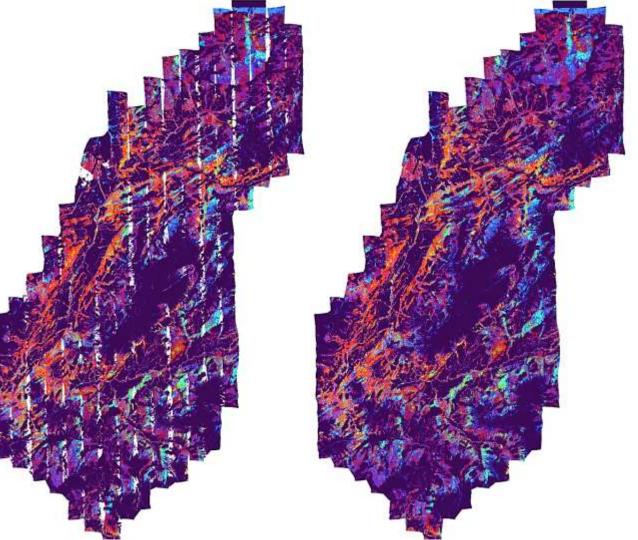
- Sea surface temperature
- Gaps due to orbital characteristics, clouds, etc
- The informed parts are sufficiently large to be used as training image.
- Reconstruction is non-unique

Mariethoz, G., M.F. McCabe, and P. Renard, *Spatiotemporal* reconstruction of gaps in multivariate fields using the direct sampling approach. WRR, 2012. **48**(10).

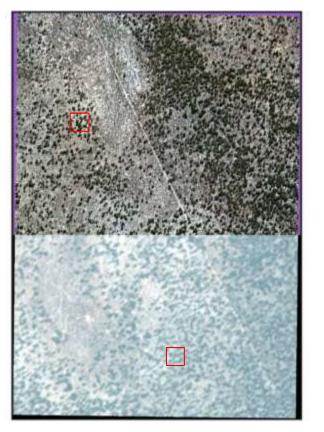


Gap-filling (grand)

- AVIRIS hyperspectral imagery
- 262'500'000 pixels
- ~4h on a small cluster



Downscaling by pattern matching



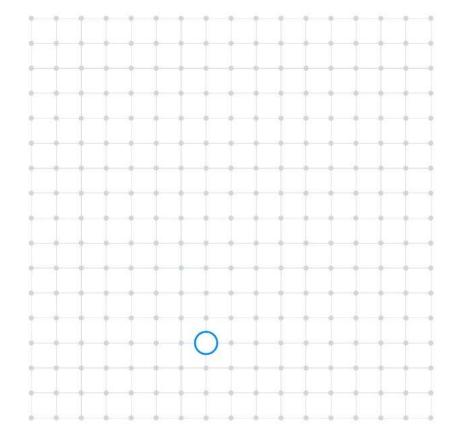
Lower portion of the image only known with low-quality sensor

Geostatistical models are often pixel-based

- e.g. sequential simulation.
- The generated patterns are based on a training image or a covariance model.

Works but...

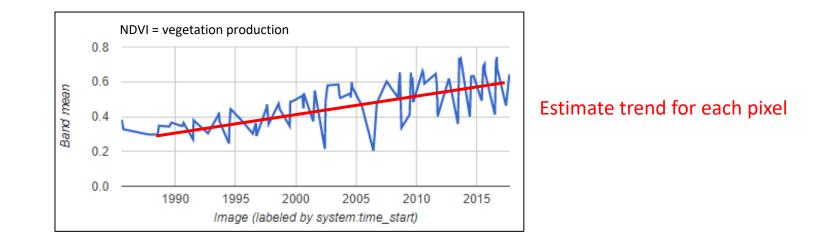
Difficult to scale to XXL++ spacetime domains.



Biggest challenge and need: the temporal dimension

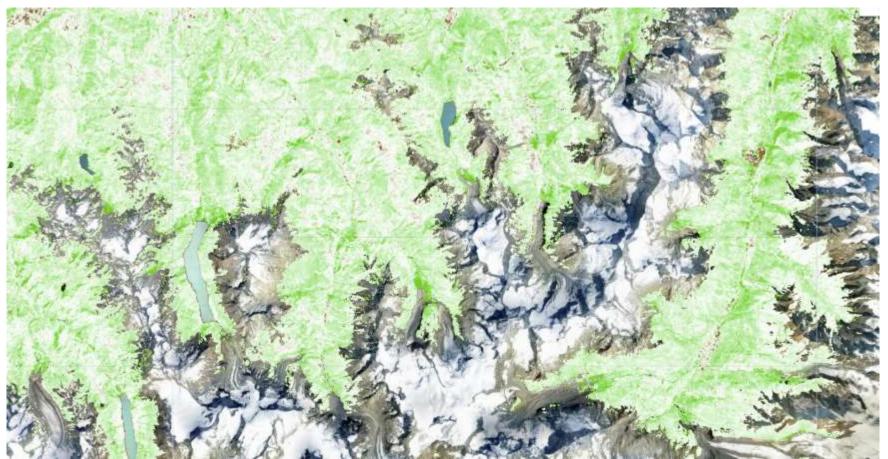
Dense time series of images

- Landsat: over 50 years of continuous data.
- For example, we study snow and vegetation processes in the Alps, based on a time series of <u>all</u> Landsat images.



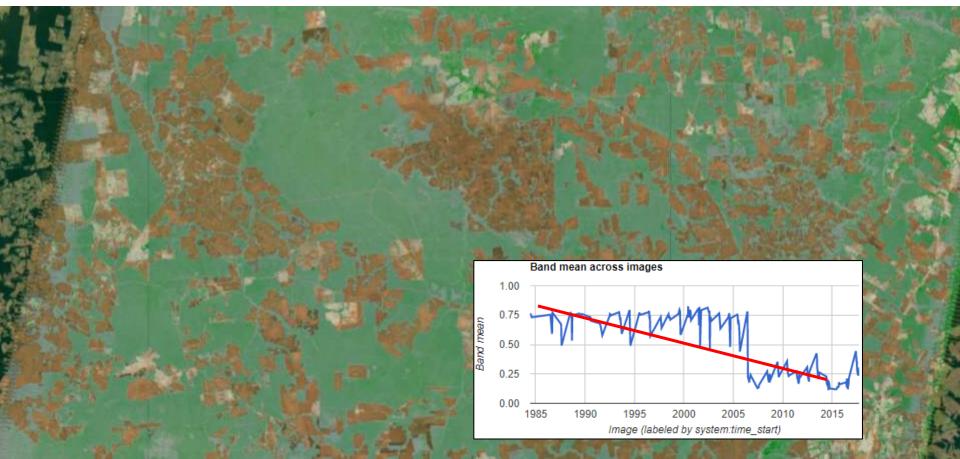
Progression of vegetation in the Alps (1980-2018, 30m resolution)

Slope of trend: Green=afforestation, brown=deforestation



Deforestation in Amazonia (1980-2018)

Slope of trend: Green=afforestation, brown=deforestation



The need for deep-time satellite data

• Climate change in the Alps:

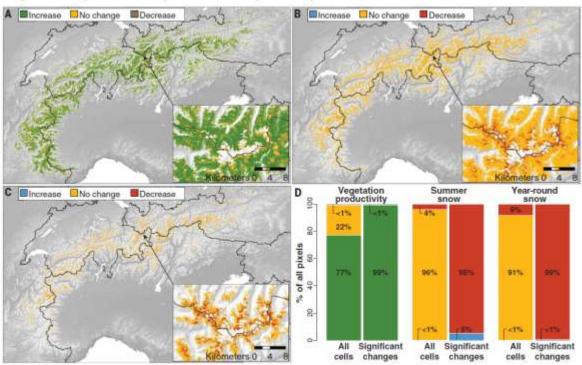
Shorter snow season, Vegetation in higher altitudes, Implications for biodiversity, Hydrological resources, Tourism, etc.

- Quantifying such environmental change requires baselines.
- Entire Alps, 30m resolution

 ~50 million pixels per image
 Multivariate
 At each pixel, a time series (1984-2023)
- What about earlier than 1984?

CLIMATE CHANGE

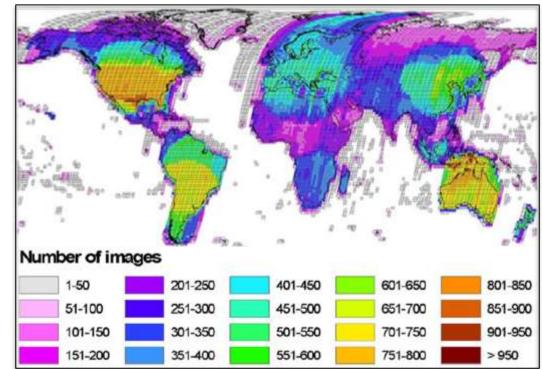
From white to green: Snow cover loss and increased vegetation productivity in the European Alps



Rumpf *et al.*, From white to green: Snow cover loss and increased vegetation productivity in the European Alps. *Science* **376**,1119-1122(2022).DOI:<u>10.1126/science.abn6697</u>

Satellites are temporally short-sighted

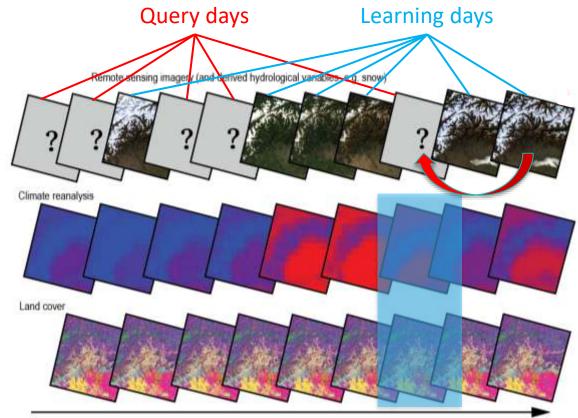
- Almost unlimited amounts of satellite data today (Sentinel, Planet Labs,...).
- Useful to see changes despite clouds.
- Much less before ~2008.
- Before 1999, on average only 1-2 cloudless images per year in central Europe.
- One image every 2-4 years in West Africa.



Status of the USGS Landsat archive [modified from Wulder et al., 2016]. Colors indicate the number of scenes available at each location for the period 2000-2009.

Generate missing epochs based on predictors

- Hypothesis: repetition of patterns under similar climatic conditions.
- Predictors are applicationdependent
- To generate snow cover, it is temperature, precipitation, solar radiation, aspect.
- For ET, it is temperature (average, min, max), precipitation.
- Climate predictors informed from 1950, thanks to ERA5 reanalysis.
- Predictors not needed at high resolution!



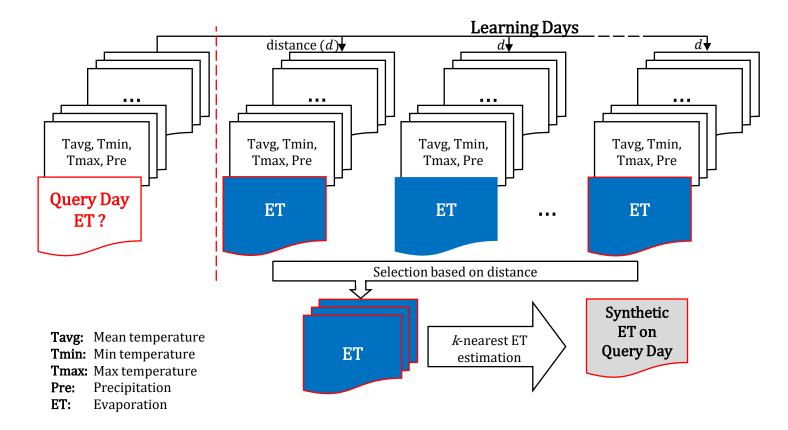
Guessing uninformed epochs

Loic Gerber

Fatemeh Zakeri

Said Obakrim

Estimation with a k-nearest neighbor approach

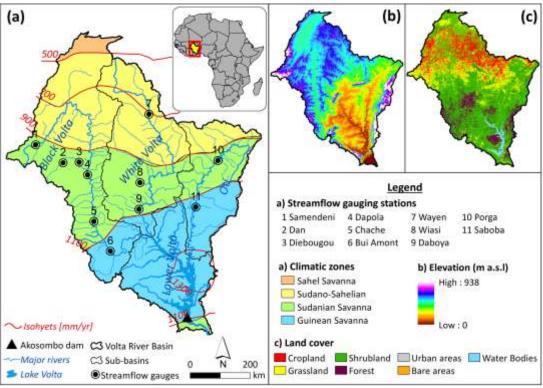


Definition of a distance

- Distance between a given query day and all learning days.
- Computed including a number of preceding days.
- The k days with the lowest distance are then aggregated to obtain an estimate for the query day (mean, median, mode, etc).
- Parameters related to the distance (size of window, k, weights of variables) are optimized using cross-validation.

Application to ET in the Volta river basin

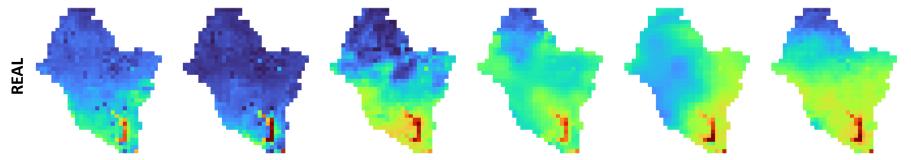
- Data scarce region
- Simulated:
 - ET (GLEAM)
 - $\circ\,$ Daily, 0.25°, 1980 2020
 - Split into training (1980-1999) and validation (2006-2020)
- Predictors
 - ERA5 Land: Precip, Tmin, Tmax, Tavg
- Multivariate tests ok (not shown...)



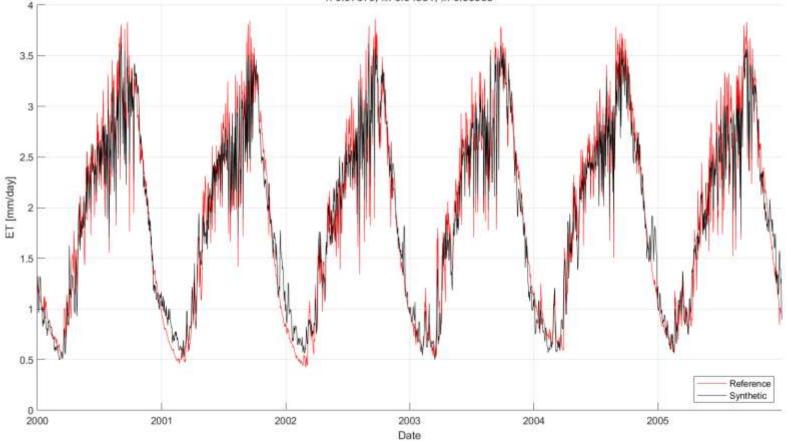
Dembélé et al., 2020

Simulated evapotranspiration

01/01/2000 01/03/2000 01/05/2000 01/07/2000 01/09/2000 01/11/2000 RMSE: 0.212 RMSE: 0.165 RMSE: 0.491 RMSE: 0.466 RMSE: 0.559 RMSE: 0.278



Mean et KGE: 0.94101 r: 0.97670, α: 0.94581, β: 0.99965

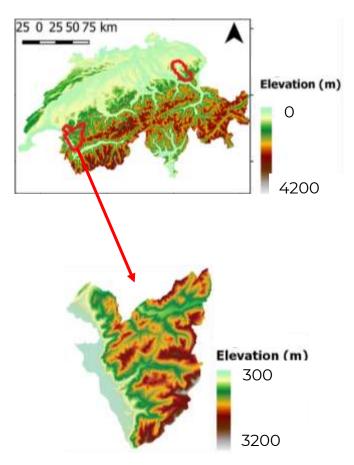


Application to snow cover

- Predicted:
 - <u>Daily</u>, 20y, Landsat 30m/Sentinel-2 snow cover - binary

(real Landsats every <16 days only)

- Two Scenarios for the predictors:
 - 1. Satellite age (including MODISobserved snow cover, 500m)
 - 2. Pre-satellite age
- Two resolutions for climate data:
 - ERA5 (temperature and precipitation, 11km)
 - Swiss national reanalysis product (1km)

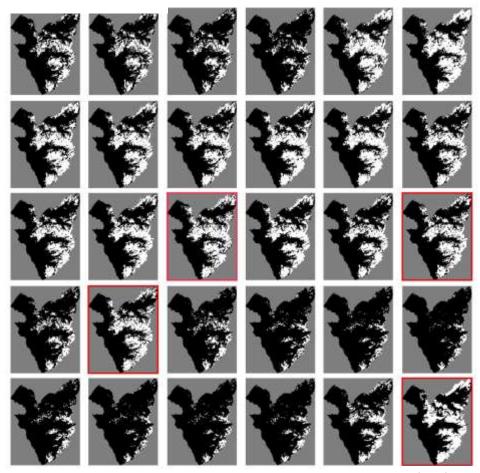


Western Swiss Alps

Results

- Optimal parameters: k=11 window=60 days (interpretable)
- One month daily snow cover in the Western Swiss Alps.
- April: spring melt with occasional snowfall,
- Realistic transitions reproduced,
- Real Landsats in red.

2019/04/01



2019/04/30

Validation against ground stations

		Карра					OA				
	Longitude/ Latitude	Satellite-Age		Pre-Satellite		Actual	Satellite-Age		Pre-Satellite		Actual
WSA		1 km	11 km	1 km	11 km	snow cover	1 km	11 km	1 km	11 km	snow cover
La Comballaz	7.08/46.38	0.82	0.82	0.81	0.80	0.86	91.99	92.22	91.32	90.95	93.95
Les Diablerets	7.17/46.35	0.74	0.71	0.71	0.66	0.78	89.47	88.62	88.60	86.61	91.69
Leysin	7.02/46.35	0.76	0.73	0.72	0.66	0.79	90.77	90.12	89.43	87.72	92.7
Château-d'Oex	7.14/46.48	0.78	0.78	0.76	0.73	0.89	91.79	92.16	91.20	90.25	96.47
MeanAll		0.77	0.76	0.75	0.71	0.83	91.00	90.78	90.14	88.88	93.70
TJS											
Degersheim	9.19/47.36	0.67	0.63	0.59	0.59	0.86	91.51	89.91	89.54	88.75	96.69
Mogelsberg	9.14/47.36	0.43	0.50	0.34	0.33	0.73	90.21	91.16	89.43	89.47	95.03
St. Peterzell	9.17/47.32	0.42	0.41	0.39	0.39	0.37	86.30	85.52	85.86	85.33	88.95
Unterwasser Iltios	9.31/47.18	0.65	0.69	0.68	0.71	0.77	84.07	85.83	85.64	86.75	90.61
MeanAll		0.54	0.56	0.50	0.50	0.68	88.02	88.10	87.62	87.57	92.82

Resolution of predictors has little influence!

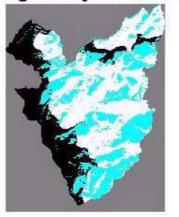
Comparison with a degree-day snow model

Method	Overall Accuracy			
kNN vs actual snow cover	93.84%			
degree-day vs actual snow cover	88.20%			
kNN vs degree-day	88.63%			

Also validated against high-resolution Planet Lab images, other snow reanalysis products

→ Generally almost as good as real Landsat images

DegreeDay20020101



HillShadow

NoData

NoSnow

Snow

Estimated20020101



HillShadow NoData NoSnow Snow

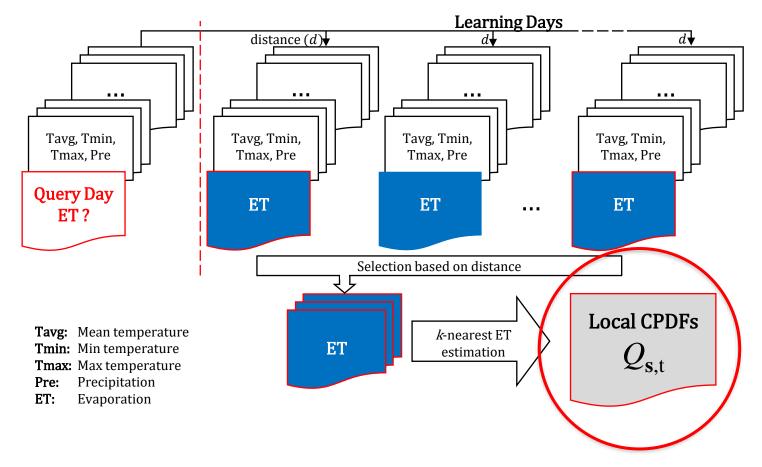
Nice but...

• Advantages:

- Ultrafast because the distance is only computed on low-resolution predictors
- kNN brings dependance to multiple predictors and complex temporal dependance
- Naturally deals with non-stationarity
- Non-parametric (no need to fit a model)
- Resampling-based → cannot produce extreme values, but can generate succession of sub-extremes
- Drawbacks:
 - Over-smooth (high K \rightarrow high smoothness)
 - The temporal covariance is solely driven by the predictors
 - No uncertainty quantification
 - Non-parametric (stuck with historical data, hard to represent extreme values)
 - Requires lots of data (but who doesn't?)

A semi-parametric kNN-based approach

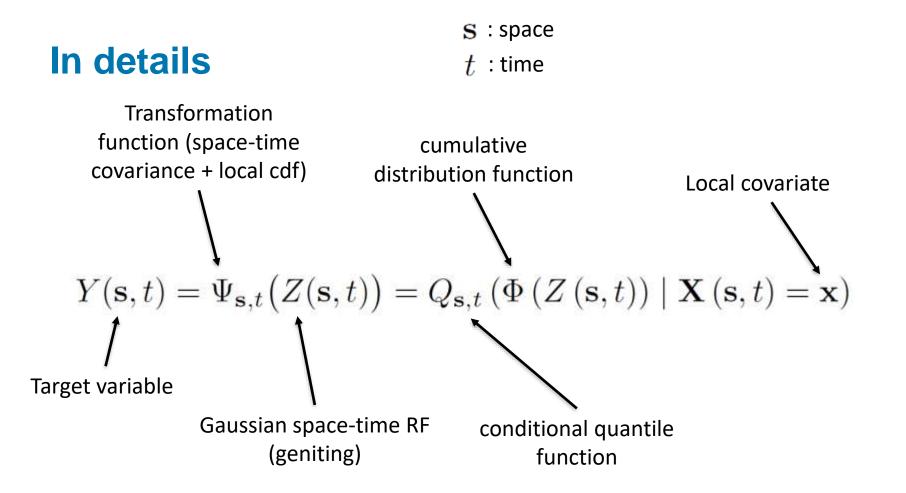
Hybrid parametric / non-parametric approach



A hybrid approach

A generator whereby, for each day to simulate:

- The kNN approach is used to select k nearest candidates based on predictors.
- A conditional distribution $Q_{s,t}$ is inferred locally based on the k candidates.
- A latent Gaussian field approach is then used to simulate the target variable Z(s,t) based on $Q_{s,t}$
- A Gneiting space-time covariance inferred on the entire training period.



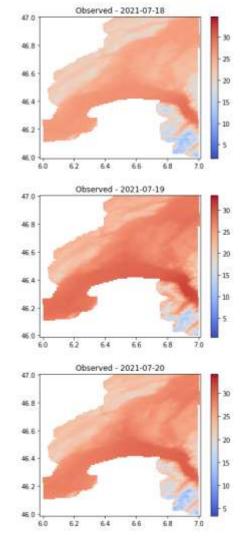
Estimation of the Gneiting covariance parameters by maximum likelihood. Pairwise likelihood is used.

Simulation in 2 parts:

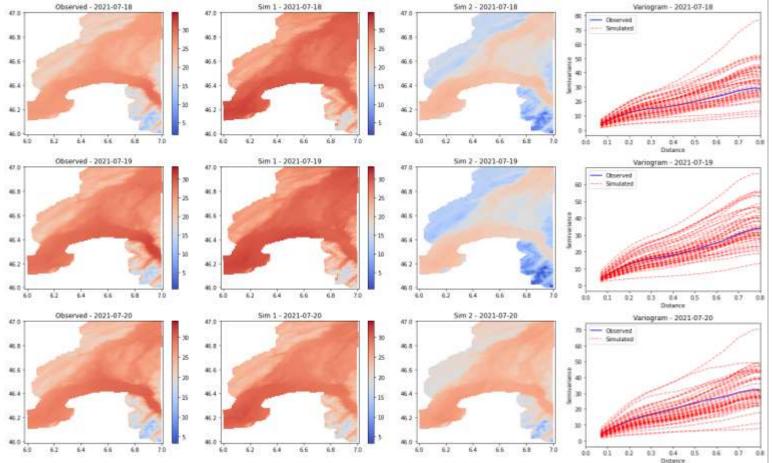
- 1. Simulation of the space-time GRF Z(s,t)
- 2. Local transformation Z(s,t) of with the estimated $\Psi_{s,t}$

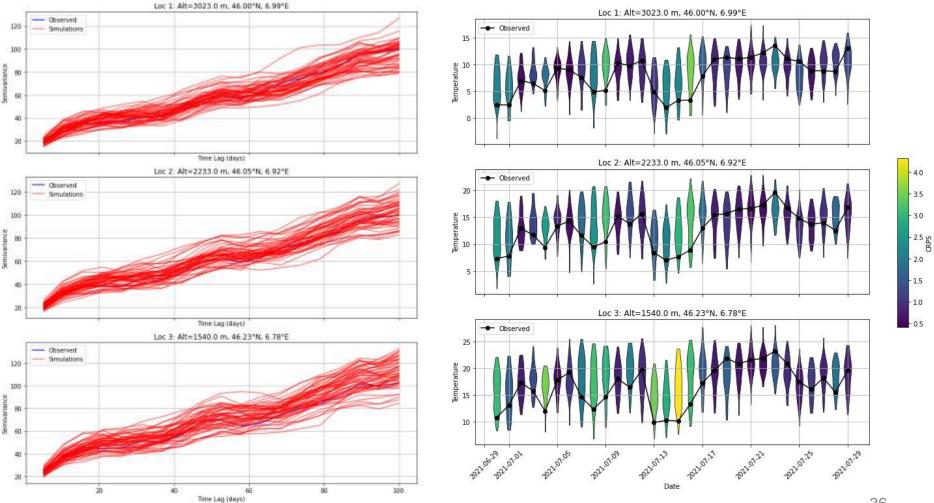
Test setting

- Simulation of daily maximum temperature over western Switzerland
- Training: 1971-2019, daily, 1km.
- Based on Meteoswiss reanalysis
- Simulation: 2020-2022, daily, 1km.
- Single predictor: pressure (isopotential 500 hHa)



Some simulations





Conclusions / takeaways

- Synthesizing data to overcome the limitations of remote sensing data regarding spatial coverage, spatial coverage, or for data fusion.
- Possible for the past, present, and possibly future.
- Requirement: having large amounts of data to resample (=learning period).
- Low-resolution predictors perform well, because the temporal patterns allow selecting candidates.

- Potentially global use. GEE implementation to come.
- Potential to generate entire synthetic multispectral images rather than derivatives, however the distance chosen should be applicationspecific.
- Climate predictors do not allow accounting for human-induced effects.
- kNN is not the only way: e.g. generative models.

Thank you

Questions?