Generation of synthetic remote sensing images

W|th uIraS|mpIe but uItrafast approaches
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A wealth of data — but it s _never enough
Eesa _ -

We would like to
measure everything,

everywhere, all the
time.

It is impossible.

0 days 00 hours 08 minutes

Sentinel-2 constellation:
summer solstice



Generating data: why?

We have lots of data, but need to generate even more!

Specific type of problem suited to data-driven models:
machine learning, geostatistics (parametric/non-parametric).

We may need to generate data for:

LA

« Filling spatial gaps: interpolation - M\Jlﬂtiple-point geostatistics v

« Uninformed scales: downscaling

« Recovering missing colors: colorization (=multivariate)

« Generating uninformed epochs (past/future) (=spatio-temporal)




Generating spatial data (with MPS)



Application to
Landsat 7
SLC-off Images

Yin, G, et al. (2017). "Gap-filling of landsat 7 imagery
using the direct sampling method." Remote Sensing 9(1).




Partial image

Gap-filling (pour Thomas)

- Sea surface temperature

« Gaps due to orbital characteristics,
clouds, etc

« The informed parts are sufficiently
large to be used as training image.

« Reconstruction is non-unique

Mariethoz, G., M.F. McCabe, and P. Renard, Spatiotemporal
reconstruction of gaps in multivariate fields using the direct sampling
approach. WRR, 2012. 48(10).
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Downscaling by pattern match

Lower portion of the image only known with

low-quality sensor



Geostatistical models are often pixel-based

e e.g. sequential simulation.

* The generated patterns are
based on a training image or a
covariance model.

Works but...

Difficult to scale to XXL++ space-
time domains.

Video R. Nussbaumer



Biggest challenge and need: the temporal dimension



Dense time series of images

Landsat: over 50 years of continuous data.

For example, we study snow and vegetation processes in
the Alps, based on a time series of all Landsat images.

Band mean
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NDVI = vegetation production

A P&N

1940 1995 2000 2005 2010 2015
Image (labeled by system time_stan)

Estimate trend for each pixel



Progression of vegetation in the Alps (1980-2018, 30m resolution)

Slope of trend: Green=afforestation, brown=deforestation

T TR, : . X




Deforestation in Amazonia (1980-2018)

Slope of trend: Green=afforestation, brown=deforestation
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Image {labeled by systemtime_starf)




The need for deep-time satellite data

CLIMATE CHANGE

Climate change in the Alps: From white to green: Snow cover loss and increased
vegetation productivity in the European Alps

A [ilrvmase DNo hﬂnoe  @Decreass 5 B [._lm,v-saae DNochange .Decmas:}l_'_e«,\s
Srer Y )
Entire Alps, 30m resolution TS alx,o;.y
. 2 pro uctivi

o ~50 million pixels per image ] I I I

o Multivariate
o At each pixel, a time series

All  Significant All Significant All Skgnificant
colls changes cells changes cells changes

Shorter snow season,
Vegetation in higher altitudes,
Implications for biodiversity,
Hydrological resources,
Tourism, etc.

Quantifying such environmental
change requires baselines.

80
1

40
f

% of all pixels

(1984-2023)

20

What about earlier than 19847 ?

Rumpf et al., From white to green: Snow cover loss and increased vegetation productivity
in the European Alps. Science 376,1119-1122(2022).D0I:10.1126/science.abn6697



https://doi.org/10.1126/science.abn6697

Satellites are temporally short-sighted

Almost unlimited amounts of
satellite data today (Sentinel,
Planet Labs,...).

Useful to see changes despite
clouds.

Much less before ~2008.

Before 1999, on average only
1-2 cloudless images per year
in central Europe.

One image every 2-4 years in
West Africa.

Number of images

150 [ 201250 401450 | | 601650

' 51-100 I 51000 | | 451500 | 651-700 [ 851-900
P 101150 [ 201-3%0 501-550 | 701750 [ 201-950
B 51200 [ 51400 [ ss1600 [ 751800 [ > 950

Status of the USGS Landsat archive [modified from Wulder et al., 2016]. Colors indicate the
number of scenes available at each location for the period 2000-20089.



Generate missing epochs based on predictors

* Hypothesis: repetition of patterns

under similar climatic conditions. Query days Learning days

e e et

 Predictors are application-
dependent

» To generate snow covet, it is
temperature, precipitation, solar
radiation, aspect.

Climate reanalys:s

« For ET, it is temperature
(average, min, max),
precipitation.

» Climate predictors informed from |, ;.
1950, thanks to ERAS reanalysis.

* Predictors not needed at high
resolution!

Past Present



Guessing uninformed epochs

Loic Gerber Fatemeh Zakeri Said Obakrim




Estimation with a k-nearest neighbor approach

Learning Days

Tavg, Tmin,
Tmax, Pre

Query Day
ET?

Tavg: Mean temperature
Tmin: Min temperature

Tmax: Max temperature

Pre: Precipitation

ET: Evaporation

distance (d)y
I

Tavg, Tmin,
Tmax, Pre

dy S d¥

I

| =

Tavg, Tmin,
Tmax, Pre

Tavg, Tmin,
Tmax, Pre

Selection based on distance |

knearest ET
estimation




Definition of a distance

* Distance between a given query day and all learning days.
e Computed including a number of preceding days.

* The k days with the lowest distance are then aggregated to obtain an
estimate for the query day (mean, median, mode, etc).

* Parameters related to the distance (size of window, k, weights of variables)
are optimized using cross-validation.



Application to ET in the Volta river basin

Data scarce region

Simulated:
o ET (GLEAM)
o Daily, 0.25°, 1980 — 2020

o Split into training (1980-
1999) and validation (2006-

a) Streamflow gauging stations
2020 1 Samendeni 4 Dapola 7 Wayen 10 Porga
2 Dan 5 Chache 8 Wiasi 11 Saboba

3 Diebougou 6 Bui Amont 9 Daboya
a) Climatic zones b) Elevation (m a.s.l)

[ sahel Savanna High : 938
[ Sudano-Sahelian

Predictors
[) Sudanian Savanna

o ERAS Land: Precip, Tmin, | & . B ucorion S =
TmaX1 Tan AAkosombodan-; €3 Volta River Basin ’l ¢) Land cover

~—Major rivers  C3 Sub-basins 0 N 200 Bl Cropland Il shrubland T Urban areas 2] Water Bodies

M u |t|Va|"|ate teStS Ok ® (oke Volta @streamflow gauges ——__ ] km [ Grassland WM forest Bare area; __
(not shown...)

Low: 0




REAL

SIM

Simulated evapotranspiration

01/01/2000 01/03/2000 01/05/2000 01/07/2000 01/09/2000 01/11/2000
RMSE: 0.212 RMSE: 0.165 RMSE: 0.491 RMSE: 0.466 RMSE: 0.559 RMSE: 0.278
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ET [mm/day]

‘\'-"s |

;\‘,“

Mean et
KGE: 0.94101
r: 0.97670, o: 0.94581, 3: 0.99965

2003

2005

———— Raference
—— Synthetic

2002

Date




Application to snow cover

* Predicted:

o Daily, 20y, Landsat 30m/Sentinel-2
snow cover - binary

(real Landsats every <16 days only)

« Two Scenarios for the predictors:

1. Satellite age (including MODIS-
observed snow cover, 500m)

2. Pre-satellite age

 Two resolutions for climate data:

o ERAS (temperature and
precipitation, 11km)

o Swiss national reanalysis product
(1km)

25 0 255075 km A

Elevation (m)

0]

|

4200

~ Elevation (m)
300

Western Swiss Alps



2019/04/01

Results

Optimal parameters:
k=11

window=60 days
(interpretable)

One month daily snow cover
in the Western Swiss Alps.

April: spring melt with
occasional snowfall,

Realistic transitions
reproduced,

Real Landsats in red.

2019/04/30



Validation against ground stations

Kappa OA
Longitude/ Satellite-Age Pre-Satellite Actual Satellite-Age  Pre-Satellite  Actual
Latitude 11 11 Snow 11 11 Snow
WSA 1 km km 1 km cover 1 km km 1 km km cover
La Comballaz 7.08/46.38 0.82 0.82 0.81 0.80 0.86 91.99 9222 91.32 9095 9395
Les Diablerets  7.17/46.35 0.74 0.71 0.71 0.66 0.78 89.47 88.62 88.60 86.61 91.69
Leysin 7.02/46.35 0.76 0.73 0.72 0.66 0.79 90.77 90.12 89.43 87.72 92.7
Chateau-d'Oex  7.14/46.48 078 0.78 0.76 0.73 0.89 91.79 92.16 91.20 90.25 96.47
MeanAll 077 076 0.75 0.71 0.83 91.00 90.78 90.14 88.88  93.70
TJS
Degersheim 9.19/47.36 0.67 0.63 0.59 0.59 0.86 91.51 8991 89.54 8875 96.69
Mogelsberg 0.14/47.36 043 050 034 033 0.73 90.21 91.16 8943 8947 9503
St. Peterzell 9.17/47.32 042 041 0.39 0.39 0.37 86.30 85.52 8586 8533 8895
U“‘flrt‘i"(’) WS 931/47.18 0.65 0.69 068 071 077 ¢)07 8583 8564 8675 9061
MeanAll 054 056 050 0.50 0.68 88.02 88.10 87.62 87.57 92.82

Resolution of predictors has
little influence!



Comparison with a

degree-day snow model

Method Ateuracy
kNN vs actual snow cover 93.84%
degree-day vs actual snow cover 88.20%
kNN vs degree-day 88.63%

Also validated against high-resolution Planet Lab
images, other snow reanalysis products

=» Generally almost as good as real Landsat images

DegreeDay20020101

i
I HillShadow

NoData

NoSnow

I Snow

HillShadow
NoData
NoSnow

Snow



Nice but...

« Advantages:

©)

O

O

Ultrafast because the distance is only computed on low-resolution predictors

KNN brings dependance to multiple predictors and complex temporal
dependance

Naturally deals with non-stationarity
Non-parametric (no need to fit a model)

Resampling-based - cannot produce extreme values, but can generate
succession of sub-extremes

« Drawbacks:

O O O O O

Over-smooth (high K - high smoothness)

The temporal covariance is solely driven by the predictors

No uncertainty quantification

Non-parametric (stuck with historical data, hard to represent extreme values)
Requires lots of data (but who doesn’t?)



A semi-parametric KNN-based approach



Hybrid parametric / non-parametric approach

Learning Days

Tavg, Tmin,
Tmax, Pre

Query Day
ET?

Tavg: Mean temperature
Tmin: Min temperature

Tmax: Max temperature

Pre: Precipitation

ET: Evaporation

distance (d)y dy
[
[ [ [

Tavg, Tmin,
Tmax, Pre

Tavg, Tmin,
Tmax, Pre

Tavg, Tmin,
Tmax, Pre

pd

Selection based on distance

Local CPDFs

knearest ET
estimation




A hybrid approach

A generator whereby, for each day to simulate:

« The kNN approach is used to select k nearest candidates based on
predictors.

 Aconditional distribution Q,, is inferred locally based on the k
candidates.

« Alatent Gaussian field approach is then used to simulate the target
variable Z(s,t) based on Qq,

« A Gneiting space-time covariance inferred on the entire training
period.



S :space

In detalls t :time
Transformation
function (space-time cumulative
covariance + local cdf) distribution function

Local covariate

\ \

Y (s,t) = Uy y (Z(s,1) = Qur (D (Z (s,1)) | X (s,t) = %)

[

Target variable

Gaussian space-time RF conditional quantile
(geniting) function

32



Simulation

Estimation of the Gneiting covariance parameters by maximum
likelihood. Pairwise likelihood is used.

Simulation in 2 parts:
1. Simulation of the space-time GRF Z(s,t)

2. Local transformation Z(s,t) of with the estimated ¥ ,



Observed - 2021-07-18

i I

Test setting i

« Simulation of daily maximum temperature over B | "
western Switzerland PRl

* Training: 1971-2019, daily, 1km. R

.1»)0

« Based on Meteoswiss reanalysis I
« Simulation: 2020-2022, daily, 1km. B T

« Single predictor: pressure »

(isopotential 500 hHa) A




Some simulations

Observed - 2021-07-18 Sim 1 - 2021-07-18 Vanogram - 2021-07-18
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Semivanance

[

Semonisnce

Semevarance
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Conclusions / takeaways

» Synthesizing data to overcome the < Potentially global use. GEE
limitations of remote sensing data Implementation to come.
regarding spatial coverage, spatial

:  Potential to generate entire synthetic
coverage, or for data fusion.

multispectral images rather than
» Possible for the past, present, and derivatives, however the distance

possibly future. chosen should be application-
* Requirement: having large amounts specific.
of data to resample (=learning  Climate predictors do not allow
period). accounting for human-induced
effects.

» Low-resolution predictors perform
well, because the temporal patterns < kNN is not the only way: e.g.
allow selecting candidates. generative models.



»
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