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Allez Denis!



A wealth of data – but it is never enough

We would like to 

measure everything, 

everywhere, all the 

time. 

It is impossible.



We have lots of data, but need to generate even more!

Specific type of problem suited to data-driven models:

machine learning, geostatistics (parametric/non-parametric).

We may need to generate data for:

• Filling spatial gaps: interpolation→ Multiple-point geostatistics 

• Uninformed scales: downscaling

• Recovering missing colors: colorization (=multivariate)

• Generating uninformed epochs (past/future) (=spatio-temporal)

Generating data: why?



Generating spatial data (with MPS)



Application to 

Landsat 7 

SLC-off images

Yin, G., et al. (2017). "Gap-filling of landsat 7 imagery 

using the direct sampling method." Remote Sensing 9(1).



Gap-filling (pour Thomas)

• Sea surface temperature

• Gaps due to orbital characteristics, 
clouds, etc

• The informed parts are sufficiently 
large to be used as training image.

• Reconstruction is non-unique

Mariethoz, G., M.F. McCabe, and P. Renard, Spatiotemporal 
reconstruction of gaps in multivariate fields using the direct sampling 
approach. WRR, 2012. 48(10).



Gap-filling

(grand)
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• AVIRIS hyperspectral 
imagery

• 262’500’000 pixels

• ~4h on a small 
cluster



Downscaling by pattern matching

Lower portion of the image only known with 
low-quality sensor

Lower portion of the image 
reconstructed using MPS



Video R. Nussbaumer

Geostatistical models are often pixel-based

• e.g. sequential simulation.

• The generated patterns are 
based on a training image or a 
covariance model.

Works but…

Difficult to scale to XXL++ space-
time domains.



Biggest challenge and need: the temporal dimension



Dense time series of images

• Landsat: over 50 years of continuous data.

• For example, we study snow and vegetation processes in 

the Alps, based on a time series of all Landsat images.

NDVI = vegetation production

Estimate trend for each pixel



Progression of vegetation in the Alps (1980-2018, 30m resolution)
Slope of trend: Green=afforestation, brown=deforestation



Deforestation in Amazonia (1980-2018)
Slope of trend: Green=afforestation, brown=deforestation



The need for deep-time satellite data
• Climate change in the Alps:

Shorter snow season, 

Vegetation in higher altitudes,

Implications for biodiversity,

Hydrological resources, 

Tourism, etc.

• Quantifying such environmental 
change requires baselines.

• Entire Alps, 30m resolution

o ~50 million pixels per image

o Multivariate

o At each pixel, a time series 
(1984-2023)

• What about earlier than 1984?

Rumpf et al., From white to green: Snow cover loss and increased vegetation productivity 
in the European Alps. Science 376,1119-1122(2022).DOI:10.1126/science.abn6697

https://doi.org/10.1126/science.abn6697


• Almost unlimited amounts of 

satellite data today (Sentinel, 

Planet Labs,…).

• Useful to see changes despite 

clouds.

• Much less before ~2008.

• Before 1999, on average only 

1-2 cloudless images per year 

in central Europe.

• One image every 2-4 years in 

West Africa.

Satellites are temporally short-sighted
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Status of the USGS Landsat archive [modified from Wulder et al., 2016]. Colors indicate the
number of scenes available at each location for the period 2000-2009.



• Hypothesis: repetition of patterns 
under similar climatic conditions.

• Predictors are application-
dependent

• To generate snow cover, it is 
temperature, precipitation, solar 
radiation, aspect.

• For ET, it is temperature 
(average, min, max), 
precipitation.

• Climate predictors informed from 
1950, thanks to ERA5 reanalysis.

• Predictors not needed at high 
resolution!

Generate missing epochs based on predictors

Learning daysQuery days



Guessing uninformed epochs

Loic Gerber Fatemeh Zakeri Said Obakrim



distance (𝑑) 𝑑 𝑑

Estimation with a k-nearest neighbor approach

Tavg: Mean temperature
Tmin: Min temperature
Tmax: Max temperature
Pre: Precipitation
ET: Evaporation

Synthetic 
ET on 

Query Day 
k-nearest ET 
estimation

Tavg, Tmin, 
Tmax, Pre

…

Tavg, Tmin, 
Tmax, Pre

…

Tavg, Tmin, 
Tmax, Pre

…

Tavg, Tmin, 
Tmax, Pre

…

Query Day
ET ?

Learning Days

…ET ETET

ET

Selection based on distance



Definition of a distance

• Distance between a given query day and all learning days.

• Computed including a number of preceding days.

• The k days with the lowest distance are then aggregated to obtain an 
estimate for the query day (mean, median, mode, etc).

• Parameters related to the distance (size of window, k, weights of variables) 
are optimized using cross-validation.
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Dembélé et al., 2020

Application to ET in the Volta river basin

• Data scarce region

• Simulated:

o ET (GLEAM)

o Daily, 0.25°, 1980 – 2020

o Split into training (1980-

1999) and validation (2006-

2020)

• Predictors

o ERA5 Land: Precip, Tmin, 

Tmax, Tavg

• Multivariate tests ok

(not shown…)
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• Predicted:

o Daily, 20y, Landsat 30m/Sentinel-2 
snow cover - binary

(real Landsats every <16 days only)

• Two Scenarios for the predictors:

1. Satellite age (including MODIS-
observed snow cover, 500m)

2. Pre-satellite age

• Two resolutions for climate data:

o ERA5 (temperature and 
precipitation, 11km)

o Swiss national reanalysis product 
(1km)

Application to snow cover

Western Swiss Alps
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4200



Results
2019/04/01

2019/04/30

• Optimal parameters:

k=11

window=60 days 

(interpretable)

• One month daily snow cover 

in the Western Swiss Alps.

• April: spring melt with 

occasional snowfall,

• Realistic transitions 

reproduced,

• Real Landsats in red.



Validation against ground stations

Resolution of predictors has 
little influence!



Comparison with a 

degree-day snow model

Method Overall
Accuracy

kNN vs actual snow cover 93.84%

degree-day vs actual snow cover 88.20%

kNN vs degree-day 88.63%

Also validated against high-resolution Planet Lab 
images, other snow reanalysis products

➔ Generally almost as good as real Landsat images



• Advantages:
o Ultrafast because the distance is only computed on low-resolution predictors

o kNN brings dependance to multiple predictors and complex temporal 
dependance

o Naturally deals with non-stationarity

o Non-parametric (no need to fit a model)

o Resampling-based → cannot produce extreme values, but can generate 
succession of sub-extremes

• Drawbacks:
o Over-smooth (high K → high smoothness)

o The temporal covariance is solely driven by the predictors

o No uncertainty quantification

o Non-parametric (stuck with historical data, hard to represent extreme values)

o Requires lots of data (but who doesn’t?)

Nice but…
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A semi-parametric kNN-based approach



distance (𝑑) 𝑑 𝑑

Hybrid parametric / non-parametric approach

Tavg: Mean temperature
Tmin: Min temperature
Tmax: Max temperature
Pre: Precipitation
ET: Evaporation

Local CPDFs

Qs,t

k-nearest ET 
estimation

Tavg, Tmin, 
Tmax, Pre

…

Tavg, Tmin, 
Tmax, Pre

…

Tavg, Tmin, 
Tmax, Pre

…

Tavg, Tmin, 
Tmax, Pre

…

Query Day
ET ?

Learning Days

…ET ETET

ET

Selection based on distance



A hybrid approach
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A generator whereby, for each day to simulate:

• The kNN approach is used to select k nearest candidates based on 

predictors.

• A conditional distribution Qs,t is inferred locally based on the k

candidates.

• A latent Gaussian field approach is then used to simulate the target 

variable Z(s,t) based on Qs,t

• A Gneiting space-time covariance inferred on the entire training 

period.



In details
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Transformation 
function (space-time 

covariance + local cdf)

Target variable

Gaussian space-time RF 
(geniting)

Local covariate

cumulative 
distribution function

conditional quantile 
function

: space

: time



Estimation of the Gneiting covariance parameters by maximum 

likelihood. Pairwise likelihood is used.

Simulation in 2 parts:

1. Simulation of the space-time GRF Z(s,t)

2. Local transformation Z(s,t) of with the estimated Ψ𝒔,𝑡

Simulation
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• Simulation of daily maximum temperature over 

western Switzerland

• Training: 1971-2019, daily, 1km. 

• Based on Meteoswiss reanalysis

• Simulation: 2020-2022, daily, 1km.

• Single predictor: pressure 

(isopotential 500 hHa)

Test setting
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Some simulations
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• Synthesizing data to overcome the 

limitations of remote sensing data 

regarding spatial coverage, spatial 

coverage, or for data fusion.

• Possible for the past, present, and 

possibly future.

• Requirement: having large amounts 

of data to resample (=learning 

period).

• Low-resolution predictors perform 

well, because the temporal patterns 

allow selecting candidates. 

• Potentially global use. GEE 

implementation to come.

• Potential to generate entire synthetic 

multispectral images rather than 

derivatives, however the distance 

chosen should be application-

specific.

• Climate predictors do not allow 

accounting for human-induced 

effects.

• kNN is not the only way: e.g. 

generative models.

Conclusions / takeaways



Thank you

       Questions?
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