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2 Once upon a time Xylella fastisiosa

= Phytopathogenic bacterium

Bacteria

= Transmitted by insect vectors

= Decline or death of infected plants

Insect vector

= Not very characteristic symptoms /

. Analyses @ 7 healthy v
S contaminated X

Long latency period

More than 400 host species

. —
e

Lavender Citrus spp Grapevine a Ove tree
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Xylella fastisiosa in EU

© First

After North America, South America, detection

and Asia, Xf conquered Europe

2019

2016

Devastating economic impact: Xf has the potential to affect

70% of the production of older Olive trees (>30y/o) )
35% of the younger ones
11% of citrus > production loss

of 5.5 billion €
13% of almond
1-2% of grape production

N
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> Xylella fastisiosa in EU
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Turbelin et al. Perspectives in Ecology and Conservation 21 (2023) 143-150

= Devastating economic impact: Xf has the potential to affect

70% of the production of older Olive trees (>30 y/o)
35% of the younger ones

11% of citrus

13% of almond

1-2% of grape production

\

-

production loss
of 5.5 billion €
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> How to fight?

surveillance
= No effective curative method = < prophylaxis are the key strategies
destruction

= Quarantine pest under regulation

=  Control measures to prevent the spread

=  Establisment of demarcated areas

Infected zone
Buffer zone

= Eradication measures

Remove infected or symptomatic plant
and plants which belong to the same species
Expanded surveillance: sampling and testing
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> Risk-based surveillance of Xylella fastisiosa

= Strategic allocation of sampling efforts across time, space and populations
considering various risk factors

=  Whatis risk?

VULNERABILITY

HAZARD

Exposure
Sensitivity
Impact

Damaging
phenomena

)

Prevalence of Xf Massive and
@ heterogeneous data
Probability of pIant-heaIth sanltarY a!erts,
£ Xf meteorological predictions,
presenee o satellite environmental data,

abiotic sensor data, land use...
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> Obijectives

Learning and predicting risk, and optimizing surveillance

Learning the risk : v identify risk factors
and its determinants v produce risk maps

/ \ Machine learning model
adapted to spatial extrapolation

RISK = HAZARD X VULNERABILITY

\/ Point process models

« design surveillance models

—> {\/ propose sequential sampling

strategies conditional on the risk

Planning data collection
from the risk evaluation
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> Xylella fastisiosa in France

= Presence/absence of Xf 2015 — 2023
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> Learning and predicting the risk

= 112 environmental and climatic factors Bioclimatic
Soil composition
Land type

é Land orientation
Alti
D titude

Most of them are spatially autocorrelated

=  Supervised learning workflow

. Split Data
PACA x Corsica / Model
. . //
Training Set |
\ | |
T | ]
Raw Cleaned Validation Validation
Data Data Set .
~N ~N N
—— |
Test Set ~ |
. Model o
Occitania evaluation Prediction
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> k-fold cross-validation

Trajn Test
Train Test !

N N
1
[ ] ] - 3
———— -~ [ HOl
Model fitting Model :

evaluation J . :.

Random CV Spatial CV Environmental block CV

Folds 0 1 ©H 2 W3 0O 4

Overly optimistic model assessment for spatial dependent data
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> Cross-validation in spatial extrapolation

Density

Learning in PACA and Corsica, predicting in Occitania

Nearest neighbor distance distribution

1 Train to test 0 cv

1 Train to train
Spatial/block CV

Random CV

Density

b A L A

Distance (m) x Distance (m) V

The edf of nearest neighbour distances found during
prediction is matched during the spatial CV process

p.11
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> Cross-validation in spatial extrapolation

Learning in PACA and Corsica, predicting in Occitania

| |
Distance distribution in feature space
I Train to train [ Train to test O cv
Spatial CV Environmental block CV

D.0-

= \
N U\ : \
Lo S —— et e 0.0- = N \
0 10 20 30 0 10 20 30
Feature space distance x Feature space distance V

The distance of training data is rather small, compared to what is required during prediction

Environmental block CV is doing a better job
v Integrated Spatial Surveillance for Risk Assessment
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Factors

? Feature selection

Scores based on importance obtained from 29 machine learning methods
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> Predictive model 1

XGBoost x spatially weighted factors

= We define a weight matrix 1/, for spatially structured factors X,

. A . .
R [ —— S L, Weight assigned to Ui  Observations
054 T o B in the local regression '
% 044 R i centered on §
803+ . | 1
S | . .
302 . ! Point to predict s
i | o
0.1 . : “ .
0.01 T T T T :\ T . ‘. [ ]
0 10000 20000 30000 40000 50000 60000 @ Ra nge r
distance Range r 0

= We get a new set of factors: Xy = (WXspata Xaspat)

Data Weighted missclassified data Weighted missclassified data
= eXtreme Gradient Boosting [e _e e o ® _o
@ e @ e @ e
® @ ® ® o ® e ® O ®
® O ® ® e ® - ® o 'Y
Fitting S Fitting 5 a0 Fitti
Y — f ( X ) Qi"‘b\ o RS itting
[/[/ SN (2
m@% m % ‘/{}\
Prediction Prediction Prediction Ense.mple
prediction
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? Predictive model 2

Spatial logistic regression model

= Presence/absence: Y(S) ~ BEZT(}J(S))

= Probability of presence p(S), such that

PS)  _ sx(s) + Z(s)

L=p(s) \

Gaussian random field
= |nference INLA/SPDE &

log
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> Validation

= Presence/absence:

1, if p(s) = ¢,

Prediction

Y(s) = .
() 0, if p(s) <t
=  Metrics
TP
Sensitivity =
TP + FN
TN
Specificity = TN + FP
Sens. + Spec.
Balanced accuracy =
2

B
IIHHII

Density

Confusion matrix

Reference

1

TN

Threshold moving

Probability of infection

AU(RO)C
Perfect
1 0c&assifier ROC curve
) Better

True positive rate

False positive rate
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2 Model comparison: test in Occitania (o /e (11206

Reference

Reference Spatial Iogistic

R — - 5 N N N
XGBoost (Xw) regression model
5o e 3280 | 192

AUC: 0.523
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il 1780 il 1240
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Prediction
Prediction

Spatial prediction - XGBoost( X )
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> Model comparison

» Models’ performances are questionable

= Hard to set the threshold in extrapolation

= Existing areas of applicability*?

» But surveillance aims to improve it

Learning the risk : v identify risk factors
and its determinants v produce risk maps

RISK = HAZARD X VULNERABILITY

Nt

DIETe TP v design surveillance models

o e olecton ey propose et sampr
strategies conditional on the risk
(remember Francois’ talk)

*Meyer & Pebesma (2021) Methods in Ecology and Evolution
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1.00-

0.75-

0.50-

0.25-

? Model comparison

= As « surveillance model » we randomly select % of the observations in Occitania

= We test on the remaining set in Occitania

Balanced Accuracy

0.00-

40 60

Alpha (%)

AUC
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0.00-
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Alpha (%)

—— XGBoost (Xy)

——— Spatial logistic regression model
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2 Modeling the surveillance process

Q© First 100 fixation points

Movements during
the first 3 Seconds

Wassily Kandinsky (1912)

The observer first takes in the entire scene, then gradually shifts focus to specific details.
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> Sequential Surveillance Scheme

Eye movement modeling Surveillance desigh modeling
= Spatial heterogeneity of fixation points = Spatial heterogeneity
linked to the features of the target space underlying spatial risk of disease

=  Short term dependency

location of the last sample taken

= Dynamic contextuality

length of the jump between two points

Penttinen & Ylitalo (2016)

= Learning effect = Self-interaction

time-dependent behavior reflecting self-interaction information already collected in the surrounding area
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> Sequential point process

For a sequence 57 = (s1,...,sy) of ordered points in W C R?,
each point s; depends on all preceding points s;_1.

The density f of a sequence is defined as: f(57) = fi(s1) Hi_l fiv1(siv1]57).

ith
o fir1(s|s7) o

Risk map

prior knowledge or
estimation of disease risk

Reweighting function
modifies the sampling intensity
based on the local information level ((s)

Proposal kernel m(p) < p*(1 — p)b,a,b e R

favors nearby points in the sequence

K(.SHS) x e 2o sz llsi— SH
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> Marked sequential point process

We have a marked ordered sequence Pj, = ((s1,m1), .-y (Sk,mE)),

with binary marks M (skx4+1) = B(a(sk+1)) given the status of the disease,

a being the true prevalence map.
. . P k_]_ —>
Its density is: g(Py) = g1(P1) [[;—; Gi+1(Six1. mis1|F),
with gi1(sip1, mip1|P) = firr(sipr|P)M(siq1) and £, 5 (s) o an(s)k(si, s)m(ep (s)).

The information map

| »
1 a2 — Dexp (— LIl
vp(s) =5+

; .2
2 2) 1 €XP (_Hsghﬁs” )

is a kernel-weighted average of past samples’ infection statuses,
smoothed over space.
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> Optimal design for prevalence estimation

The optimal surveillance design P; is defined by

k

argmin{IBV(L p,) while maximizing Z m; }
PreSs P

where S is the set of surveillance schemes and IBV(vp,,) = [, tp, (s)(1 — tp, (s))du

is the Integrated Bernoulli Variance (IBV) of the information map

The function 7 (¢(s)) is tuned to prioritize high-uncertainty areas: mopt(p) = II1 /2(p).

Then, we get the prevalence estimate as

_ Z?:l K(S’ia S)mi

ap, (s) = Z?:lK(Sz‘,S) , VseW.
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> What next?

Combine the two!

Algorithm 1 Sequential Surveillance with Adaptive Risk Estimation

1: Initialize dataset D < ()
2: Initialize ML model M
3: Choose initial locations sg

4: for k=1to N do Learning the risk

5. Step 1: Fit ML model on current data D and its determinants

6: M ﬁt(D) i

7 a,(s) < M.predict(s) for all s € W / \

8:  Step 2: Compute information map ¢(s) from D

9:  Step 3: Compute Integrated Bernoulli Variance (IBV) RISK = HAZARD > VULNERABILITY

10: IBV « [i ¢(s)(1 —u(s)) ds
11:  Step 4: Optimize re-weighting function w(¢(s)) /

12:  Step 5: Define sampling density

13 f(s) o ap(s) - K(sg_1,s) m(e(s)) Planning d.ata coIIect!on
14:  Step 6: Select next locations sy from the risk evaluation
15 s < sample(f(s))

16:  Step 7: Observe infection status my

17: D(—DU{(Sk,mk)}

18: end for
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