

A few statistical challenges in glaciology

N. Eckert et al.

Institut des des Géosciences de l'Environnement INRAE / Univ. Grenoble Alpes Grenoble Risk Institute

Geolearning, Fréjus, 31 march 2025

Today's menu :

- Context
- Glacier shrinkage: from local to global scale
- Conclusions

Context (1) : climate warming most iconic representation

From Little Ice Age to the Age Without Ice...

Context (2) : sea level rise and consequences

Irish coast during storm, @Irish Independent

Impact of sea level rise in Bangladesh

Sources: Dacca University; Intergovernemntal Pannel on Climate Change (IPCC).

Context (3) : changes in hydrological regimes and consequences

- Gradual change in seasonality of streamflows
- Peak regime before disappearance of glacial component of the water budget
- 2 billions of people affected (debated)

Source: Adler et al. (2022, fig. CCP5.2(a, b), p. 2282).

Context (4) : transient disaster risk

- Multiplicity of processes / risks: icefall, GLOFs, debris flows and rockfall involving fresh sediments, complex combinations, etc.
- Extreme non-stationarity
- Locally very rare but catastrophic, with far-reaching consequences

LE DESASTRE DE SANT CERVAN LE PASSAGE DU TORBENT À TRAVERS LE VILLAGE DE BIONNAY

GLOF in Saint Gervais, 1892, (175 casualties)

Chamoli (India) burst flood, 2021 : 50-200 casualties

La Berarde, 2024. Picture @ONF

A few challenges...

- Ice budget, streamflows and sea level rise: spatio-temporal assessment and impacts
- Disaster risk: spatio-temporal prediction, anticipation
- Combination of data sources and scales, seamless modelling chains, uncertainty propagation, etc.

Potential glacier collapse (Aosta Valley, 2020) and evacuated area

Today's menu :

- Context
- Glacier shrinkage: from local to global scale
- Conclusions

The sad story of Sarennes glacier

- Sarennes exceptional series:
- One of the world's oldest with continuous records of both winter and summer balance (1949-2022)
- Almost total disappearance: will integrate the official list of glacier casualties soon

Extracting the local temporal signal

• Lliboutry (1974) approach:

 $b_{it} = a_o + \alpha_i + \beta_t + \mathcal{E}_{it}$ $\sum_i \alpha_i = \sum_t \beta_t = 0$ $\mathcal{E}_{it} \sim N(0, \sigma^2)$

- ✓ Spatial-temporal variance decomposition of annual balance b
- ✓ An annual value free from local and geometric effects.

• A bivariate physically-oriented change-point approach:

$$\begin{pmatrix} b_{it} \\ h_{it} \end{pmatrix} \sim N_2 \left(\begin{pmatrix} \alpha_{bi} + \beta_{bt} \\ \alpha_{hi} + \beta_{ht} \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \right) \quad f_{it} = h_{it} - b_{it}$$

$$\beta_{ft} \sim N\left(a_{f2} + b_{f2}t, \sigma_{f2}^{2}\right), t \in \left[\tau_{f} + 1, t_{o} + T - 1\right]$$

$$\beta_{ft} \sim N\left(a_{f1} + b_{f1}t, \sigma_{f1}^{2}\right), t \in \left[t_{o}, \tau_{f}\right]$$

$$\beta_{ht} \sim N(a_{h2} + b_{h2}t, \sigma_{\beta h2}^{2}), t \in [\tau_{h} + 1, t_{o} + T - 1]$$

$$\beta_{ht} \sim N(a_{h1} + b_{h1}t, \sigma_{\beta h1}^{2}), t \in [t_{o}, \tau_{h}]$$

- Observation model on measured winter balance h and annual balance b
- Change point models for the two seasonal components h and f
- Mass balance trend: three linear segments/variances and two change points

Results and climate relevance

since

shape

with

From local to global scale: numerous but diverse data

- In 2019, 215,000 glaciers distinct from the Greenland & Antarctic Ice Sheets covering 158,000 km²
- 19 groups / regions
- Few pointwise measurements of uneven length versus extensive remote sensing coverage over the last years/decades

Pointwise mass balance measurements © E. Thibert, INRAE.

Theia glacier atlas (Mer de glace, France)

Geolearning 2025 – A few statistical challenges in glaciology

Temporal signal for each group from measurements (1)

• A regional scale formulation of the variance decomposition with a smooth temporal structure

$$b_{it} = a_o + \alpha_i + \beta_t + \varepsilon_{it}$$

$$\beta_t = g_t + z_t \text{ with } z_t \sim N(0, \sigma_z^2)$$

$$p(g) = \frac{|A|_{+}^{1/2}}{\delta_1^{1/2(T-2)}} \exp\left(\frac{-1}{2\delta_1}g'Ag\right) \text{ Wahba (1978)}$$

$$p(\theta, x|y) \propto \pi(\theta) \times p(y|\theta, x) \times p(x|y, \theta)$$

$$j_{\text{of model unknowns}} \text{ Frior } Likelihood \\ k(\text{ filtering density }) \text{ Likelihood and } Latent/process variables}$$

$$(\text{ filtering density })$$

Temporal signal for each group from measurements (2)

- For each group:
- ✓ Common temporal structure & underlying trend
- ✓ "Reconstruction" of full individual series
- \checkmark Cumulated changes and associated uncertainty

Combination with remote sensing data

In each group:

 Combination of temporal structure provided by statistical model with long term changes provided by remote sensing (DEM differencing)

 Evaluation of ice volume changes taking into account changes in glacier extents

Results (1) : glacier mass change

Glacier mass changes rates 1961-2016 (Zemp et al., 2019)

Results (2) : contribution to sea level rise

Main contributions to sea-level budget 2004-2015 (Zemp et al., 2019 + data from Cazenave et al. 2018)

Annual glacier contributions to sea-level rise 1961-2016 (Zemp et al., 2019)

A recent update / improvement

Today's menu :

- Context
- Glacier shrinkage: from local to global scale
- Conclusions

Conclusion (1) : a playground for statisticians

- Important problems:
- Water resources
- Sea level rise
- Disaster risk
- And more : river temperature (hydropower production, ecosystems)
- Rather comprehensive data sets (WGMS etc.)
- Very simple models / approaches (my talk)
- Space for developments:
- Extreme non-stationarity and disaster risk
- "Complex" data, ex. of Maud Mégret PhD

Reconstitution of longrange glacier fluctuations from moraine position

@ Maud M. Mike P., Philippe N., Vincent J and Nico E.@ IRIMONT

Time

Conclusion (2) : now or never

2025 declared International Year of Glaciers Preservation

 UN Declares 2025 International Year of Glacier Preservation, Warns of \$4 Trillion Economic Fallout

 Ur ure 2 March 2 March 2 March 2 March 2 Declarer Preservation

 Ur ure 2 March 2 March 2 Declarer Preservation

NEWS 5 TIP LINE: 672-5555 🛛 💿 🖪 🕅 💿 🌀 🕨 💥 @NEWS5BELIZE

BREAKING NEWS

- Acknowledgements:
- for your attention
- Denis & Thomas (invitation, organisation)
- e-mail: <u>nicolas.eckert@inrae.fr</u>

References

BNP PARIBAS

- Eckert, N., Baya, H., Thibert, E., & Vincent, C. (2011). Extracting the temporal signal from a winter and summer mass-balance series: application to a six-decade record at Glacier de Sarennes, French Alps. *Journal of Glaciology*, *57*(201), 134-150.
- Lliboutry, L. (1974). Multivariate statistical analysis of glacier annual balances. *Journal of Glaciology*, *13*(69), 371-392.
- Thibert, E., Eckert, N., & Vincent, C. (2013). Climatic drivers of seasonal glacier mass balances: an analysis of 6 decades at Glacier de Sarennes (French Alps). *The Cryosphere*, 7(1), 47-66.
- Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against model errors in regression. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 40(3), 364-372.
- Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., ... & Cogley, J. G. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. *Nature*, *568*(7752), 382-386.
- Zemp, M., Jakob, L., Dussaillant, I., Nussbaumer, S., Gourmelen, N., Dubber, S., Sahra, G., Abdullahi, Andreassen, L., Berthier, E., Bhattacharya, A., Blazquez, A., Boehm Vock, L., Bolch, T., Box, J., Huss, M., Brun, F., Cicero, E., Colgan, W., Eckert, N., Farinotti, D., ... & Zheng W. Community estimate of global glacier mass changes from 2000 to 2023. *Nature*, 2025, p. 1-7.

