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INTRODUCTION AND CONTEXT



ANIMAL MOVEMENT

Time series models, based on stochastic processes, offer a natural framework to describe
the dynamics of animal movement, and to capture the strong serial correlation that is
often present in such data.

Telemetry data of sea lions’ movement in the North Pacific ocean
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TRANSITION AND UTILIZATION DISTRIBUTIONS

Two main characteristics of a process (Xt) may be of interest, depending on the aim of the study:
the transition distribution and the utilization distribution.

Transition distribution p(Xt|Xs)

Probability density of an animal’s location at
time t, given its location at time s, describing
the short-term dynamics of the movement
model.

→ Lagrangian approach: describes the
movement from the point of view of the
individual animal

Utilization distribution p
Equilibrium distribution of the process (Xt)t≥0, i.e.,
pdf of the animal’s location in geographical space
in the long-term

Pr(Xt ∈ A) =

∫
A

p(x)dx

→ Eulerian approach: describes the movement
from the point of view of a point in space

⇒ Closely related, because the long-run distribution of space use arises from the accumulation of
short-term displacements
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CONTINUOUS-TIME MODELS

Continuous-time models consider that telemetry observations arise from a continuous
movement process.

∙ naturally accommodate different temporal scales, and irregular sampling rates
∙ mostly based on diffusion processes:

∙ Ornstein-Uhlenbeck processes (Uhlenbeck and Ornstein (1930))
∙ Brownian bridges (Horne et al. (2007))
∙ more complex processes based on potential functions
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DIFFUSION STOCHASTIC DIFFERENTIAL EQUATIONS



DIFFUSION STOCHASTIC DIFFERENTIAL EQUATIONS

dXt = a(t,Xt)dt + σ(t,Xt)dWt, X0 = x0

with

∙ a(t,Xt) the drift coefficient, modeling the direction preference depending on position
∙ σ(t,Xt) the diffusion coefficient, modeling the variability around the mean
∙ Wt the Wiener process, almost-surely continuous stochastic process, with stationary
and independent increments, which satisfy

Wt+δ − Wt ∼ N (0, δI)

Under some boundedness conditions on a and σ, and given an initial condition X0 = x0,
the SDE has a unique solution (Xt)t≥0.

Lucia Clarotto Parameter and density estimation in SDEs via PINNs and Normalizing Flows Fréjus, 31/03-03/04 2025 6



DIFFUSION STOCHASTIC DIFFERENTIAL EQUATIONS

dXt = a(t,Xt)dt + σ(t,Xt)dWt, X0 = x0

with

∙ a(t,Xt) the drift coefficient, modeling the direction preference depending on position
∙ σ(t,Xt) the diffusion coefficient, modeling the variability around the mean
∙ Wt the Wiener process, almost-surely continuous stochastic process, with stationary
and independent increments, which satisfy

Wt+δ − Wt ∼ N (0, δI)

Under some boundedness conditions on a and σ, and given an initial condition X0 = x0,
the SDE has a unique solution (Xt)t≥0.

Lucia Clarotto Parameter and density estimation in SDEs via PINNs and Normalizing Flows Fréjus, 31/03-03/04 2025 6



DIFFERENT STRATEGIES OF STATISTICAL INFERENCE

Based on simulation

∙ Approximated simulation with a numerical scheme

∙ Euler-Maruyama (Kloeden and Platen, 1992)
∙ Numerical splitting scheme (Buckwar et al., 2022, Pilipovic et al., 2024)

∙ Approximate Bayesian Computation (ABC)

Based on approximation of the transition density

∙ Contrast estimator (Gloter, 2006, Ditlevsen and Samson, 2017)

∙ EM and SAEM algorithm (Beskos et al., 2006, Gloaguen et al., 2018, Ditlevsen and Samson, 2017)
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FROM SDE TO PDE: THE FOKKER-PLANCK EQUATION

∙ The marginal density p(t, x) of the process (Xt)t≥0 is the solution of the following PDE, called
Fokker-Planck equation (FPE): for any t

∂tp(t, x) = ∇ ·
(
−a(t, x)p(t, x) + 1

2σ(t, x)σ
⊤(t, x)∇p(t, x)

)
with the initial condition p(0, x) = p0(x0)

Fokker-Planck
The Fokker-Planck equation describes the evolution of the probability density p(t, x) from an
ensemble of stochastic trajectories initiated with density p0(x0).

∙ The stationary (or long-run) distribution pstat(x) of the SDE is the solution of the ODE

∇ ·
(
−a(x)pstat(x) + 1

2σ(x)σ
⊤(x)∇pstat(x)

)
= 0
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SDE AND FPE: EULERIAN AND LAGRANGIAN POINT OF VIEW

Point of view of the SDE Point of view of the FPE
(transition distribution) (utilization distribution)

Lucia Clarotto Parameter and density estimation in SDEs via PINNs and Normalizing Flows Fréjus, 31/03-03/04 2025 9



PINNS FOR FPE



PHYSICS-INFORMED NEURAL NETWORKS FOR SOLVING THE FPE

The FPE can be viewed as a general PDE with a given differential operator Nν [u] depending on
some parameter ν ,

Nν [u] = 0

Neural networks search for parametric uθ ∈ F = {uθ, NNs with weights and biases θ}

Define a loss1 ⇝ PDE residuals → empirical version on collocation points: {xi}r
i=1 ⊂ Ω

LPDE(θ) =
1
n

r∑
i=1

|Nν [uθ](xi)|2

→ Forward problem: solve minθ LPDE(θ) via stochastic optimization (mini-batch)
→ Inverse problem: solve minθ,ν LPDE(θ, ν) (include estimation of parameter ν)

1easily includes IC/BC and observations with some data-fitting term
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WHY NEURAL NETWORKS ?

Neural networks are

1. good for approximating arbitrary complex functions
2. suitable for automatic differentiation⇝ easy-and-exact Nν [uθ](x) at any x
3. able to account for observations

Graphical representation of a PINN from Lu et al. (2021)
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LOSS FUNCTION FOR STATIONARY FPE

The PINN loss for the stationary FPE is given by the sum of the observational and physical losses:

L(pstat
θ ) = −

n∑
i=1

log pstat
θ (Xti)︸ ︷︷ ︸

Lobs(pstat
θ

)

+
1
r

r∑
i=1

[
∇ ·
(
−a(xi)pstat

θ (xi) +
1
2σ(xi)σ

⊤(xi)∇pstat
θ (xi)

)]2

︸ ︷︷ ︸
LPDE(pstat

θ
)

pstat
θ must be a density ⇒ we define pstat

θ =
p̃stat
θ∫

Ω p̃stat
θ

(x)dx = 1
C p̃stat

θ , so that p̃stat
θ can be any NN

⇒ p̃stat
θ is also solution to the ODE, since

∇ ·
(
−a(x)p̃stat

θ (x) + 1
2σ(x)σ

⊤(x)∇p̃stat
θ (x)

)
= ∇ ·

(
−a(x)Cpstat

θ (x) + 1
2σ(x)σ

⊤(x)∇Cpstat
θ (x)

)
= 0

Complete loss function

L(p̃stat
θ ) = − 1

n

n∑
i=1

log p̃stat
θ (Xti) + log

∫
Ω

p̃stat
θ (x)dx︸ ︷︷ ︸

Lobs(p̃stat)

+ wPDELPDE(p̃stat
θ ) + wnorm

∣∣∣∣∫
Ω

p̃stat
θ (x)dx − 1

∣∣∣∣2︸ ︷︷ ︸
Lnorm(p̃stat)

.
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NORMALIZING FLOWS

Instead of computing the normalization term in the loss, we test a Normalizing Flow (NF) network
architecture for pstat

θ . We take our inspiration from Liu et al. (2023).

Normalizing Flow
Class of generative models that transform a simple probability distribution into a complex one
using a series of invertible functions (and such that the computation of the determinant of the
Jacobian of the inverse is efficient).
Given a latent variable z ∼ pz(z) and an invertible function fθ , the variable x = fθ(z) follows

px(x) = pz(z)
∣∣∣∣det ∂f−1

θ (x)
∂x

∣∣∣∣
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TESTS



FIRST TEST: 2D ORNSTEIN-UHLENBECK PROCESS

Ornstein-Uhlenbeck (OU) SDE (Uhlenbeck and Ornstein, 1930)

dXt = α(µ− Xt)dt + σdWt

with Wt a 2D Wiener process, µ ∈ R2 and α and σ (2 × 2) matrices, with α invertible.

∙ Stationary distribution: pstat = N (µ,Σ)

with Σ = (α⊕ α)−1vec(2D) and D = σσ⊤

2 (diffusion tensor)

∙ Transition probability : Xt | Xs ∼ N (m(t − s),Σ2(t − s))
with m(t − s) = e−α(t−s)Xs + (I − e−αt)µ and Σ2(t − s) =

∫ t
0 eα(s−t)σσ⊤eα⊤(s−t)ds

∙ We estimate the stationary pdf (and eventually the parameters θ = {µ,Σ}) using a NF-PINN
pstat
θ that respects the FPE corresponding to the OU SDE.

∙ We reparameterize the stationary FPE so that it is defined through Σ instead of α and σ.
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RESULTS: 2D OU EQUATION

dXt = α(µ− Xt)dt + σdWt

Parameters: α =

[
1 0.1

0.1 1

]
, σ =

[
2 0.2

0.2 1

]
, Σ =

[
2.003 0.175
0.175 0.503

]
, µ = [1, 1]⊤

Stationary distribution pstat = N (µ,Σ) Estimated distribution p̂stat p̂stat − pstat

Estimated parameters (via inverse problem): Σ̂ =

[
2.095 0.240
0.240 0.458

]
, µ̂ = [1.009, 1.020]⊤
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ANIMAL MOVEMENT VIA SDES WITH POTENTIAL FUNCTION

Langevin movement
Michelot et al. (2019) propose to use the Langevin equation to model the animal movement

dXt =
γ2

2 ∇ log p(Xt)dt + γdWt, X0 ∼ x0

with γ2 the speed parameter.

Resource selection function
In order to link the movement of the Langevin process to environmental drivers, Michelot et al.
(2019) model the utilization distribution p with a resource selection function (or potential function)

p(x|β) = 1
C exp

( J∑
j=1

βjcj(x)
)

︸ ︷︷ ︸
potential function

, ∇ log p(x|β) =
J∑

j=1
βjcj(x)

with J spatial covariates c1, . . . , cJ and parameters β1, . . . , βJ, and C a normalizing constant.
The potential surface represents the forces of attraction and repulsion driving animals’ movement.
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CASE STUDY

Three spatial covariates c1, c2, c3 of the resource selection function

Stationary distribution pstat Gradient ∇ log pstat Observations (Euler-Maruyama)
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ESTIMATION

∙ We estimate pstat with a NF-PINN pstat
θ from telemetry and habitat data (the covariates

c1, c2, c3).

∙ We focus on one individual animal.

Stationary distribution pstat Estimated distribution p̂stat p̂stat − pstat
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PERSPECTIVES

Issues (work in progress)
∙ The stationary distribution is not perfectly captured.

∙ The inverse problem does not retrieve the true covariate parameters β1, β2, β3.

Next developments
∙ Apply to a second case study: randomly generated covariate fields on a discrete grid

→ more similar to real environmental data.

∙ Apply to a real dataset (Stellar sea lions in Alaska).

∙ Compare with results in Michelot et al. (2019).
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POTENTIAL BENEFITS

Issues of Michelot et al. (2019)

∙ The movement model was chosen so that the stationary distribution (accounting for
environmental covariates) is convenient.

∙ Handling categorical covariates is challenging (problems in the gradients), yet they are the
most common.

Potential of our approach
∙ Freely choose the SDE to characterize movement and estimate the stationary distribution and
parameters.

∙ Unless we find a corresponding interesting potential function, we would loose the direct
inference of covariate effect.

∙ Add variability in diffusion coefficient σ based on the environment via categorical parameters.
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