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Simulating natural spatial temporal phenomena using deep generative models

@ Thesis research: Geological maps [Mines Paris]

@® Postdoctoral research: Hydrographic time-series [INRAE]



The problem: simulating sedimentary facies in an underground volume

Conditional simulation of sedimentary facies in an underground volume
How do we go from left to right? ("Fill the volume")

Source: Isatis (Geovariances), Mines Paris Study



Geostatistical methods

Flexible, easily conditioned, but generally lack realism.

Reference simulation Plurigaussian simulation conditioned on wells
from left simulation

Source images: Weill 2013, Bubnova 2018



Process-based model: Flumy

Flumy, a stochastic process-based model that produces highly realistic simulations, but is
hard to condition (Lopez, 2003; Flumy-Userguide, 2022)
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Process-based model: Flumy

Flumy, a stochastic process-based model that produces highly realistic simulations, but is
hard to condition (Lopez, 2003; Flumy-Userguide, 2022)
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Deep generative learning: a transformation problem

Given a dataset, we want to sample new, never-seen before, convincing simulations with the
same properties as simulations from the dataset



Deep generative learning: a transformation problem

Given a dataset, we want to sample new, never-seen before, convincing simulations with the
same properties as simulations from the dataset

Easy to sample Random Variable

G

Complex and unknown Random Variable (our images)

I:l Sand, Point Bar

|:] Sand, Channel Lag
:’ Silts, Levee
:’ Silts, Overbank

2D Training pictures, 5500 simulations with 4 possible facies, generated with Flumy



@ Generative Adversarial Networks (GANs)
@ Discrete denoising diffusion models (DDM)

© Future research

@ Conclusion



@ Generative Adversarial Networks (GANs)
GAN framework
Parametrized GAN
Conditioning GANs



We want to find an approximation Gy of a transformation G:

Latent Hidden Output
space layer layer
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P
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The generator defines a distribution py. We want pg = p;.



The GAN framework

A generative framework inspired by game-theory:

Lreal

Fake or Real ?

Diseriminator

Z ~ N(0,1) Generator —> .’L'fake

We optimise both models with gradient descent, each trying to maximize their own payoff The
models compete on a min-max objective:

arg min arg max L(6, ®)
6 ®



3D Results

Generated Volumes + Cross-section
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Parametrizatio: CGAN

.......

Add a second input to the network.
[Conditional GAN (Mirza et al., 2014)] o & ol s
Sand percentage and channel extension.



Parametrization: Result

1SBX 20, Sand 20% 1SBX 20, Sand 30% 1SBX 20, Sand 40% 1SBX 20, Sand 50% 1SBX 20, Sand 60% 1SBX 20, Sand 70% 1SBX 20, Sand 80%
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Conditioning the GAN model

Honouring the available data:
® Trained generator (prior model): p(z)
® Variational Bayes Conditioning: p(z|x*) x p(x*|z)p(z)

® |nference model learns this posterior distribution
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Conditioning the GAN model

We have ly the inference model that transforms 2 ~ N(0, /) into z ~ qy(z|x*).
WV are the parameters of the model.

Neural network

Neural Network hy, W the weights of the layers
(Chan and Elsheikh, 2019):

qu(z|x*) = v#p(2)



Conditioning the GAN model

We have ly the inference model that transforms 2 ~ N(0, /) into z ~ qy(z|x*).
WV are the parameters of the model.

Neural network Gaussian mixture (Bhavsar et al., 2024)

Neural Network fy, W the weights of the layers We design an alternative hy — Gaussian

(Chan and Elsheikh, 2019): Mixture. W are the parameters of the Gaussian
components:

qu(z|x*) = v#p(2)

w(z|x*) Z?T, x:(2)

where f,, 5 is the Gaussian density with mean p
and covariance %.



Conditioning the GAN model

We have ly the inference model that transforms 2 ~ N(0, /) into z ~ qy(z|x*).
WV are the parameters of the model.

Neural network Gaussian mixture (Bhavsar et al., 2024)

Neural Network fy, W the weights of the layers We design an alternative hy — Gaussian

(Chan and Elsheikh, 2019): Mixture. W are the parameters of the Gaussian
components:

qu(z|x*) = v#p(2)

w(z|x*) Z?T, x:(2)

where f,, 5 is the Gaussian density with mean p
and covariance %.

V* =argmin DKL(q\u(z\x*) [l p(z|x*))
v



Conditioning the GAN model: results

Once the inference model is trained, thousands of realizations can be simulated at low cost.
This allows us to compute metrics and statistics over conditioned simulations.

Generator simulations accept-reject
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Conditioning the GAN model: Results

We also compare the percentage of succesfully predicted observation pixels:

Percentage of correctly predicted observation per well
Well 1 Well 2 Well 3 Well 4

100% 100% 100% 100%
GAN +
Neural
Network Well 5 Well 6 Well 7 Well 8
Total
accuracy:
0.99 99% 100% 100% 100%
Well 1 Well 2 Well 3 Well 4
94% 98% 100%
GAN + g
Gaussian
Mixture Well 5 Well 6 Well 7 Well 8
Total
accuracy:
098 98% 96% 98%



Stabilization techniques journey

MS-GAN with Gaussian

GAN with Gaussian Noise . S
Noise in Discriminator

Flumy Images

MS-W-GAN-SN with

Vanilla GAN MS-GAN GroupSort
GP: Gradient Penalty W-GAN-GP W-GAN-SN with Groupsort
SN: Spectral Normalization
MS: Multiscale - >



Conclusion GANs

GANs models for spatial simulation:

Pros

e Good results, both in 2D and 3D
® Quick simulation once trained

® Can be conditioned using Bayesian scheme




Conclusion GANs

GANs models for spatial simulation:

Pros

e Good results, both in 2D and 3D
® Quick simulation once trained

® Can be conditioned using Bayesian scheme

® Hard to train, unstable, need a lot of stabilization
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@ Discrete denoising diffusion models (DDM)
Categorical denoising diffusion
Conditioning DDMs



Denoising diffusion models on categorical data (Campbell et al., 2022)

Our data is not continuous, but discrete (facies types).
But the framework is ill adapted for discrete data!

Pixel Value

0.0 02 0.4 0.6 0.8 10
Time

Diffusion noising process for one pixel
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Denoising diffusion models on categorical data (Campbell et al., 2022)

Our data is not continuous, but discrete (facies types).
But the framework is ill adapted for discrete datal We use Markov Jump Process!
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Diffusion noising process for one pixel Noising Markov jump process for one pixel
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Denoising diffusion models on categorical data

Application of the forward Markov Jump Process (Noising)

Continuous Markov Jump Process X(t), finite state space K.

29



Denoising diffusion models on categorical data

Application of the forward Markov Jump Process (Noising)

Continuous Markov Jump Process X(t), finite state space K.
Probability at any time t:

p(xe| Xo = x0) = elo QUs)ds

where Q(t) is the generator matrix of the process.
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Denoising diffusion models on categorical data

Application of the forward Markov Jump Process (Noising)

Continuous Markov Jump Process X(t), finite state space K.
Probability at any time t:

p(xe| Xo = x0) = elo QUs)ds
where Q(t) is the generator matrix of the process.

[t h Q f ds
P(xe—h| Xt = xt, Xo = x0) = /\//u/tinomial< “xe © elo Xo)
%xo

Xt efo
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Denoising diffusion models on categorical data

Application of the forward Markov Jump Process (Noising)

Continuous Markov Jump Process X(t), finite state space K.
Probability at any time t:

p(xe| Xo = x0) = elo QUs)ds

where Q(t) is the generator matrix of the process.

ft n Qs f ds
p(Xe—n|Xe = x¢, Xo = x0) = Multinomial “x: © elo X0
X¢ efo )95 x4

We use a Neural network Dy that gives an estimation Xo:
De(Xt, t) = X0
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Denoising diffusion models on categorical data

Application of the forward Markov Jump Process (Noising)

Continuous Markov Jump Process X(t), finite state space K.
Probability at any time t:

p(xe| Xo = x0) = elo QUs)ds

where Q(t) is the generator matrix of the process.

/t n Qs f ds
p(Xe—n|Xe = x¢, Xo = x0) = Multinomial “x: © elo X0
X¢ efo )95 x4

We use a Neural network Dy that gives an estimation Xo:
De(Xt, t) = Xo
Trained to give an approximation of xg given t and x;:
0" = argmin Dk, (p(xt,h\xt,xo) I pg(xt,;,|xt))
0

29



Diffusion & GANSs: 9 facies dataset

Real Flumy MSWGAN- MJP
Simulations SN DDM

® New Flumy dataset
® |n-depth comparison GANs & Diffusion

Channel Point Bar Sand Plug Crevasse Crev. Spl. Crevasse Levee Overbank Mud Plug
Lag Splay | Il Chan. Splay Il
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9 facies: connected components
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Connected component size (nb of voxels in log scale)
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Facies Type

Size of connected of different facies for our GAN and DDM model, in the 9 facies scenario.
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9 facies: connected components

W1 Distances between connected size distributions models/Flumy
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9 facies: proportions of facies

Models
— Flumy

s MSW-GAN-SN
i Discrete Diff.
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Proportion of different facies for our GAN and DDM model, in the 9 facies scenario.
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Conditioning DDMs
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Built-in conditional architecture for DDM, with 4 separate inputs.

p(XO‘Xh Xa)
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Conditioning DDMs

Generator simulations accept-reject

Sand probabilities (111 realisations)

GAN Neural Net

Sand probabilities (100 realisations)
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Examples of realisations

work conditioning
Examples of realisations
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_ -

ixture conditioning
Examples of realisations



Conditioning DDMs

Percentage of correctly predicted observation per well

Well 1 Well 2 Well 3 Well 4
100% 100% 100%
Diffusion
Model Well 5 Well 6 Well 7 Well 8
Total
accuracy:
0.99

100% 100% 99%

100%

Comparison of the percentage of success for DDM conditioning methods.

20



DDM Conclusion

Our "Diffusion" model is an alternative to our previous GAN model even for discrete data
generation.

Pros

® More stable than GANs
¢ DDMs minimize a well-defined objective function

® Conditioning method gives better results




DDM Conclusion

Our "Diffusion" model is an alternative to our previous GAN model even for discrete data
generation.

Pros

® More stable than GANs
¢ DDMs minimize a well-defined objective function

® Conditioning method gives better results

® Slow inference compared to GANs (step by step)

® Qur model is not as good as GANs on our metrics (proportion problems)
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© Future research
Modelizing hydrographic variables



Modelizing hydrographic variables

ANDRA data around the CIGEO nuclear waste
disposal site.

® Water level

® Temperature

© pH

@ Conductivity at 25°C
@ Dissolved 02

@ O2 saturation

@ Nitrates concentration
® Turbidites

© FDom (Fluorescent Dissolved Organic
Matter) / Organical Carbon

@ PAH (Polycyclic Aromatic Hydrocarbon)

Source: Andra

3D



Modelizing hydrographic variables

ANDRA data around the CIGEO nuclear
waste disposal site. Range: 2012-2024
Step: Every 4 hours

I



iables: field samples

Tndex(['OPE96B11 - 2,4-D', 'OPE9611 - 2,4-MCPA', 'OPE9GOIL - AMPA'
\/ery sparce f|e|d samples and observations 'OPE90O11 - Jhtene’, 'OPE98O11 - Acenaphtylene’,

'OPE90E11 - ide hloro ique', 'OPE90011 - Aclonifene
around the site. Even cleaned we still have ‘0PE9R11 - hlore', 'OPE96G11 - Aldrine', 'OPE9@O11 - Aluminium’,
500 or so '0PE90014 - Thiabendazele', 'OPE90014 - Titre A’ metrique Compl

'OPE90014 - Tribut 1-cation’, 'OPE90014 - Trichloroethylene',
WhICh to keep ? '0PE9RO14 - Tr a 'O0PE90014 - Trifluraline',

"0PE98014 - ite', 'OPE96014 - Xylene-ortho', 'OPE90614 - Zinc',
‘0PE90014 -
dtype='object’, length=521)
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Time-series architectures

Forecasting:

® N-BEATS (Oreshkin et al. 2019)
[univariate time-series]

® TimesNet (Wu et al. 2023) [multivariate

Block Input

time-series] Stk 1

Simulation: R Sk e !
L Lt Stack 2

@ Time-Series GANs (Yoon et al., 2019) : — . |

FC FC A S| tereeast

® TTS-GAN (Li et al., 2022) T T i |

. . lgh@n | (gD )| 2L Stack M
© FinGAN (Vuleti¢ et al., 2024) . L<%

Retrieval-A ted Diffusion Model . : .
© Retrieval-Augmented Diffusion Models Image source: Neural Basis Expansion Analysis

(Liu et al., 2024) for interpretable Time-series forecasting
e ... (NBEATS), Oreshkin et al., 2020
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Time-series simulation

Plan:
@ Simulate 1 station [GAN 7 Diffusion 7]

® Take into account field
observations/samples [Parametrization]

© Simulate all stations

@ Time-series inputation (spatial or
temporal) [Conditioning]

@ Simulate all area [777]

G



Conclusion

Potential of deep generative models (GANs and DDMs) for spatial simulations:
® Flexible & realistic, as was our objective

® Allows to easily generate thousands of simulations for uncertainty estimation

7



Conclusion

Potential of deep generative models (GANs and DDMs) for spatial simulations:
® Flexible & realistic, as was our objective
® Allows to easily generate thousands of simulations for uncertainty estimation
Postdoctoral research:
® Fix the bias in the denoising model

® Generate temporal and spatio-temporal data
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