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Simulating natural spatial temporal phenomena using deep generative models

1 Thesis research: Geological maps [Mines Paris]
2 Postdoctoral research: Hydrographic time-series [INRAE]
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The problem: simulating sedimentary facies in an underground volume

Conditional simulation of sedimentary facies in an underground volume
How do we go from left to right? ("Fill the volume")

Source: Isatis (Geovariances), Mines Paris Study
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Geostatistical methods

Flexible, easily conditioned, but generally lack realism.

Reference simulation Plurigaussian simulation conditioned on wells
from left simulation

Source images: Weill 2013, Bubnova 2018
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Process-based model: Flumy

Flumy, a stochastic process-based model that produces highly realistic simulations, but is
hard to condition (Lopez, 2003; Flumy-Userguide, 2022)

Source image: (Flumy-Userguide, 2022)
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Deep generative learning: a transformation problem

Problem
Given a dataset, we want to sample new, never-seen before, convincing simulations with the
same properties as simulations from the dataset

2D Training pictures, 5500 simulations with 4 possible facies, generated with Flumy

6



Deep generative learning: a transformation problem

Problem
Given a dataset, we want to sample new, never-seen before, convincing simulations with the
same properties as simulations from the dataset

2D Training pictures, 5500 simulations with 4 possible facies, generated with Flumy

6



1 Generative Adversarial Networks (GANs)
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Reminder

We want to find an approximation Gθ of a transformation G :

The generator defines a distribution pθ. We want pθ ≈ pr .
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The GAN framework

A generative framework inspired by game-theory:

We optimise both models with gradient descent, each trying to maximize their own payoff The
models compete on a min-max objective:

argmin
θ

argmax
Φ

L(θ,Φ)
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3D Results
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Parametrizatio: CGAN

Add a second input to the network.
[Conditional GAN (Mirza et al., 2014)]
Sand percentage and channel extension.
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Parametrization: Result
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Conditioning the GAN model

Honouring the available data:
• Trained generator (prior model): p(z)

• Variational Bayes Conditioning: p(z |x⋆) ∝ p(x⋆|z)p(z)
• Inference model learns this posterior distribution
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Conditioning the GAN model

We have IΨ the inference model that transforms ẑ ∼ N(0, I ) into z ∼ qΨ(z |x⋆).
Ψ are the parameters of the model.

Neural network
Neural Network IΨ, Ψ the weights of the layers
(Chan and Elsheikh, 2019):

qΨ(z |x⋆) = IΨ#p(z)

Gaussian mixture (Bhavsar et al., 2024)

We design an alternative IΨ → Gaussian
Mixture. Ψ are the parameters of the Gaussian
components:

qΨ(z |x⋆) =
K∑
i=1

πi fµi ,Σi (z)

where fµ,Σ is the Gaussian density with mean µ
and covariance Σ.

Ψ∗ =argmin
Ψ

DKL

(
qΨ(z |x⋆) || p(z |x⋆)

)
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Conditioning the GAN model: results

Once the inference model is trained, thousands of realizations can be simulated at low cost.
This allows us to compute metrics and statistics over conditioned simulations.
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Conditioning the GAN model: Results

We also compare the percentage of succesfully predicted observation pixels:
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Stabilization techniques journey

GP: Gradient Penalty
SN: Spectral Normalization
MS: Multiscale
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Conclusion GANs

GANs models for spatial simulation:

Pros
• Good results, both in 2D and 3D
• Quick simulation once trained
• Can be conditioned using Bayesian scheme

Cons
• Hard to train, unstable, need a lot of stabilization
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Denoising diffusion models on categorical data (Campbell et al., 2022)

Problem
Our data is not continuous, but discrete (facies types).
But the framework is ill adapted for discrete data!

We use Markov Jump Process!

Diffusion noising process for one pixel

Noising Markov jump process for one pixel
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Denoising diffusion models on categorical data

Application of the forward Markov Jump Process (Noising)
Continuous Markov Jump Process X (t), finite state space K .

Probability at any time t:

p(xt |X0 = x0) = e
∫ t
0 Q(s)dsx0

where Q(t) is the generator matrix of the process.

p(xt−h|Xt = xt ,X0 = x0) = Multinomial

(
e
∫ t
t−h Q(s)dsxt ⊙ e

∫ t−h
0 Q(s)dsx0

xT
t e

∫ t
0 Q(s)dsx0

)
We use a Neural network Dθ that gives an estimation x̂0:

Dθ(xt , t) = x̂0

Trained to give an approximation of x0 given t and xt :

θ∗ = argmin
θ

DKL

(
p(xt−h|xt , x0) ∥ pθ(xt−h|xt)

)
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Diffusion & GANs: 9 facies dataset

• New Flumy dataset
• In-depth comparison GANs & Diffusion
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9 facies: connected components

Size of connected of different facies for our GAN and DDM model, in the 9 facies scenario.
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9 facies: connected components
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9 facies: proportions of facies

Proportion of different facies for our GAN and DDM model, in the 9 facies scenario.
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Conditioning DDMs

Built-in conditional architecture for DDM, with 4 separate inputs.

p(x0|xt , x⋆0 )
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Conditioning DDMs
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Conditioning DDMs

Comparison of the percentage of success for DDM conditioning methods.
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DDM Conclusion

Our "Diffusion" model is an alternative to our previous GAN model even for discrete data
generation.

Pros
• More stable than GANs
• DDMs minimize a well-defined objective function
• Conditioning method gives better results

Cons
• Slow inference compared to GANs (step by step)
• Our model is not as good as GANs on our metrics (proportion problems)
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Modelizing hydrographic variables

ANDRA data around the CIGEO nuclear waste
disposal site.

1 Water level
2 Temperature
3 pH
4 Conductivity at 25°C
5 Dissolved O2
6 O2 saturation
7 Nitrates concentration
8 Turbidites
9 FDom (Fluorescent Dissolved Organic

Matter) / Organical Carbon
10 PAH (Polycyclic Aromatic Hydrocarbon)

Source: Andra
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Modelizing hydrographic variables

ANDRA data around the CIGEO nuclear
waste disposal site. Range: 2012-2024
Step: Every 4 hours
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Modelizing hydrographic variables: field samples/observations

Very sparce field samples and observations
around the site. Even cleaned we still have
500 or so
Which to keep ?
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Time-series architectures

Forecasting:
1 N-BEATS (Oreshkin et al. 2019)

[univariate time-series]
2 TimesNet (Wu et al. 2023) [multivariate

time-series]
Simulation:

1 Time-Series GANs (Yoon et al., 2019)
2 TTS-GAN (Li et al., 2022)
3 FinGAN (Vuletić et al., 2024)
4 Retrieval-Augmented Diffusion Models

(Liu et al., 2024)
5 . . .

Image source: Neural Basis Expansion Analysis
for interpretable Time-series forecasting

(NBEATS), Oreshkin et al., 2020

35



Time-series simulation

Plan:
1 Simulate 1 station [GAN ? Diffusion ?]
2 Take into account field

observations/samples [Parametrization]
3 Simulate all stations
4 Time-series inputation (spatial or

temporal) [Conditioning]
5 Simulate all area [???]
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Conclusion

Potential of deep generative models (GANs and DDMs) for spatial simulations:
• Flexible & realistic, as was our objective
• Allows to easily generate thousands of simulations for uncertainty estimation

Postdoctoral research:
• Fix the bias in the denoising model
• Generate temporal and spatio-temporal data
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