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Increasing frequency of ”natural” disasters

Storm Boris 14th of Septembre 2024
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Increasing frequency of ”natural” disasters

Heat Waves June 2022 and August 2023
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Non extreme climate events with huge impact

2016: Up to 30% yield loss on wheat in the ”Breadbasket”
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Compound events

Zscheischler et al., 2020
”A combination of multiple drivers and/or hazards that contributes to societal or environmental risk ”

▶ Pre-conditionned
▶ Multivariate
▶ Temporal succession
▶ Spatially distributed

Stochastic simulation as a tool to address this complexity
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Outline of the talk

1. Some reminders on spatial statistics

2. A multivariate, spatio-temporal Stochastic Weather Generator

3. A stochastic generator for heat waves

6 / 35



Intro S-T SWG Heat Waves Conclusion

Statistical model

Often: trend + GP + noise

Z (s, t) = µ(s, t) + Y (s, t) + ϵ(s, t), (s, t) ∈ D × T ⊂ Rd × R

▶ For example:

h[µ(s, t)] =
p∑

k=1

βk fk (Xk (s)) +
q∑

l=1

αl gl (Xl (t))

▶ Y (s, t) is a centered, second order, stationary Gaussian Process

Cov{Y (s, t),Y (s + h, t + u)} = C(h, u)

▶ ϵ(s, t) random noise with mean 0

Need for valid and relevant covariance functions
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Positive definiteness

Valid = positive definite
A function C : Rd × R 7→ Rp is a matrix-valued stationary covariance function iif C is a positive
definite matrix-valued function : ∀n, ∀s1, . . . , sn ∈ Rd , ∀t1, . . . , tn ∈ R et ∀a1, . . . , an ∈ Rp

n∑
i=1

n∑
j=1

p∑
k=1

p∑
l=1

ai,k Ckl (sj − si , tj − ti )aj,l ≥ 0

▶ Use covariance functions from known classes, e.g. Matérn
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Univariate modeling: Gneiting class

Definition (Gneiting, 2002)

C(h, u) =
1

(1 + γ(u))τ
C∞

(
h/(1 + γ(u))b/2

)

▶ b is a separability parameter, with 0 ≤ b ≤ 1
▶ γ is an unbounded variogram, e.g.: γ(u) = (u.rT )

α, with 0 ≤ α ≤ 2

▶ C∞ is a covariance function on Rd , ∀d ≥ 1, e.g. a Matérn covariance function

M(h; rS , ν) =
σ221−ν

Γ(ν)
(∥h∥.rS)

ν Kν (∥h∥.rS) ,

where rS > 0 is a scale parameter and Kν is the modified second order Bessel function of
order ν
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Multivariate generalization

Theorem (Allard, D., Clarotto, L. and Emery, X., 2022)

Cij (h, u) =
τij

(ηij(u) + b2
ij )

τ
M

h;
aij(

ηij(u) + b2
ij

)b/2
, νij

 ,

▶ [Cij (h, u)]
p
i,j=1 is a multivariate space-time covariance under some conditions on the p × p

matrices b, a, ν et τ
▶ η(u) is a p × p matrix-valued unbounded pseudo-variogram on R

▶ Each variable has its own set of parameters in space and in time
▶ Illustrated later
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SWGs

Adapted from Yiou (2024)
SWG are tools that generate random series of meteorological variables such as precipitation,
temperature, wind speed, etc., with statistics similar to those of recorded data:
▶ Mean, variance, quantiles, skewness, extremes
▶ Covariance (dependence) between variables
▶ Temporal dependence / coherence (persistence)
▶ Spatial dependence / coherence

▶ Calibrated on recorded series
▶ Computational efficiency ⇒ long series and/or large number of realizations
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For what purpose?

Used in impact studies
Outputs of SWGs are used as inputs in process-based models, e.g. energy demand models, crop
models, hydrological models, insurance models, ...

▶ Assessing complex, non linear, responses to climate in agro-ecological systems
▶ Explore unmeasured climates
▶ Explore plant / ecosystem models as functions of climate variability
▶ Optimal decision under uncertainty: simulate up to year t + k , optimize decision
▶ Disaggregating (downscaling) meteorological variables from GCM outputs
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Some challenges that SWGs pose to spatial statistics

▶ Building models quantifying spatial, temporal and spatio-temporal variations
▶ Doing stochastic simulations, both for the bulk and for the tail
▶ Building models and methods for multivariate, spatio-temporal extreme events
▶ Devising new approaches for assessing return levels of impactful compound events
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Our context; the project BEYOND

▶ The BEYOND project: towards new tools for epidemiological surveillance (for plants)
▶ Xylella Fastidiosa (Xf) is a plant pathogen propagated by insects
▶ Major damages: 54,000 ha of dead or uprooted olive orchards in Italy
▶ Seen in Corsica, Baleares, Tuscany
▶ Propagation depends on the whole seasonal cycle: not just one ”extreme” event

↪→ Need for a stochastic tool able to generate complete cycles over a region
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Our domain of interest

▶ Region of interest: PACA, highly
non-stationary

▶ 6 daily variables: precipitation, humidity,
radiation, wind, min and max temperature

▶ SAFRAN reanalysis data from 2012 to 2021
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General architecture

Two main assumptions
▶ Finite number of weather types over the region, k = 1, . . . ,K
▶ In each weather type k , the weather variables are modeled as transformed latent Gaussian

random fields

Yi (s, t) = ψk,i,s
(
Zk,i (s, t)

)
, k = X(t)

▶ Weather states are modeled as 1st order Markov chain with transition matrices π(t)
▶ We use empirical transformation for ψk,i with tail adjustments (Peterson and Cavanaugh,

2019)
▶ Multivariate spatio-temporal GPs for Z =

(
Zi
)

i=1,p
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Multivariate covariance
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Simulation

...Weather states

Sample a
weather state

Sample a
multivariate
random field

Transform to
weather
variables
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Marginals
All seasons, all continuous variables
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Correlations
Winter, 10 random locations
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Wet and dry spells
Wet winter spells, Dry summer spells
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Fire Weather Index
Summer

Obs. Sim.
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Fire Weather Index
Summer
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Take home messages

▶ It is possible to design a spatial, multivariate SWG with quite good statistical performances
▶ One among many possible statistical model

MSTWeatherGen
▶ Obakrim S., Benoit L., Allard D., Rey J. (2024). MSTWeatherGen: Multivariate Space-Time

Weather Generator. R package
https://sobakrim.github.io/MSTWeatherGen/index.html

▶ Obakrim, S., Benoit, L., & Allard, D. (2024). A multivariate and space-time stochastic weather
generator using a latent Gaussian framework.
https://hal.science/hal-04715860/

▶ Future work: non-stationary covariance; increased persistence, long period of droughts
▶ PhD student (A. Doizé) with P. Naveau and O. Wintenberger

24 / 35

https://sobakrim.github.io/MSTWeatherGen/index.html
https://hal.science/hal-04715860/


Intro S-T SWG Heat Waves Conclusion

Typology of SWGs

Model based (parametric)

(+) identification through a set of parameters ⇒ sensitivity analysis

(+) can create non recorded situations and simulate more extreme conditions than those
observed

(−) temporal and spatial coherence sometimes difficult to reproduce

Resampling / analogs (non parametric)

(+) compatibility between climatic variables is guaranteed

(+) statistical features and spatial/temporal are reproduced by construction

(−) cannot create unobserved meteorological situations

(−) Implicit assumption: the most extreme observation has been observed

Our approach
▶ Spatial resampling (Direct Sampling) for the spatial patterns
▶ Extreme value theory for the extrapolation of very high values

Opitz, T., Allard, D., & Mariethoz, G. (2021). Semi-parametric resampling with extremes. Spatial
Statistics, 42, 100445.
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Spatial resampling
Direct Sampling (DS) (Mariethoz and Caers, 2014)

▶ Cannot generate values
beyond those observed

▶ Tend to under-represent the
extremal dependence

↪→ Use extreme value theory as a
complement to DS
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Pareto processes

Generalized Pareto Distribution
If X(s) ∼ Fs, s ∈ D, then

X(s) − u | X(s) > u ∼ GPDσ(s),ξ(s) as u → ∞

Pareto processes (Dombry et Ribatet, 2015)
▶ Suppose uniform margins for X U (s)

▶ Consider a homogeneous risk functional r(X U )

(1 − u)−1X U (s) | [r(XU) > u] → Y (s), s ∈ D, as u → 1

where
Y (s) = η(s).r(Y)

with

η(s) :=
Y (s)
r(Y)

⊥ r(Y)
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”Uplift” extremal fields

▶ We have T independent copies of Xt (s), t = 1, . . . , T
▶ Consider only realizations such that

r
(

XU
)
> u u ∈ (0, 1)

UpliftExtremeFields

1. Compute η(s) = X U (s)/r
(

XU
)

.

2. Draw q ∼ Unif(u, 1) or set q for a given return period

3. Generate the uplifted field
X̃ U (s) = qη(s), s ∈ D

↪→ will be used the enrich the dataset with synthetic events more extremes than those observed

28 / 35



Intro S-T SWG Heat Waves Conclusion

Case study: heat waves in France

Motivation
▶ Absolute breaking temperature record in France, on 28th of June, 2019: 45.9oC at Gallargues,

Gard (previous record was 44.1oC)

▶ SAFRAN reanalysis data for Tmax , from 2010 to 2016, June-September
▶ In each mesh, standardization to uniform
▶ r = med(X U

t )
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GPD parameters
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Most extreme event
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Generating new heatwaves

Resample first, back-transform second

1. Generate uplifted extreme episodes (on the uniform scale)

2. Perform DS on uniform scales to create new spatial patterns

3. Back-transform on Temp scale using F−1
s

▶ Non stationarity is properly accounted for
▶ q is chosen according to a 10 year return period
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New realizations
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Can we validate?

▶ Functional risk is r = median on U
▶ We selected the 30 most extreme

events (2011-2016) wrt to r
▶ The 20 highest are kept aside for

validation
▶ The 10 lowest are used for training
▶ We use u = 0.92, which is the lower

bound of the validation set; return
period is 17 days during summer

▶ 250 simulations are generated using
DS
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Some final words
Heatwaves
▶ One of the few approaches combining non-parametric and parametric methods on extremes

Current work on SWGs within the Chair Geolearning
▶ Working on long period of rainfalls and droughts
▶ Simulation of precipitations using generative approaches
▶ Simulation of extreme flows on a river system
▶ Coming up with an open library
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