

Building and simulating complex geostatistical models for climate and environmental sciences

Denis Allard, [with Lionel Benoit, **Lucia Clarotto**, Xavier Emery, Grégoire Mariethoz, Saïd Obakrim, Thomas Opitz]

> Biostatistique et processus Spatiaux (BioSP), INRAE Avignon, France

Math for Mathematics for planet Earth (M4E) Workshop 11-12 of November, 2024

Increasing frequency of "natural" disasters

Storm Boris 14th of Septembre 2024

Increasing frequency of "natural" disasters

Heat Waves June 2022 and August 2023

Non extreme climate events with huge impact

2016: Up to 30% yield loss on wheat in the "Breadbasket"

Compound events

Zscheischler et al., 2020

"A combination of multiple drivers and/or hazards that contributes to societal or environmental risk "

- ▶ Pre-conditionned
- ▶ Multivariate
- ▶ Temporal succession
- \blacktriangleright Spatially distributed

Stochastic simulation as a tool to address this complexity

Outline of the talk

- 1. Some reminders on spatial statistics
- 2. A multivariate, spatio-temporal Stochastic Weather Generator
- 3. A stochastic generator for heat waves

Statistical model

Often: trend $+$ GP $+$ noise

$$
Z(\mathbf{s},t)=\mu(\mathbf{s},t)+Y(\mathbf{s},t)+\epsilon(\mathbf{s},t),\quad (\mathbf{s},t)\in D\times\mathcal{T}\subset\mathbb{R}^d\times\mathbb{R}
$$

▶ For example:

$$
h[\mu(\mathbf{s},t)] = \sum_{k=1}^p \beta_k f_k(X_k(\mathbf{s})) + \sum_{l=1}^q \alpha_l g_l(X_l(t))
$$

▶ *Y*(**s**, *t*) is a centered, second order, stationary Gaussian Process

Cov{*Y*(**s**, *t*), *Y*(**s** + **h**, *t* + *u*)} = *C*(**h**, *u*)

 \blacktriangleright ϵ (s, *t*) random noise with mean 0

Need for **valid and relevant covariance functions**

Positive definiteness

Valid = positive definite

A function $\bm{C}:\mathbb{R}^d\times\mathbb{R}\mapsto\mathbb{R}^p$ is a matrix-valued stationary covariance function iif \bm{C} is a positive $\textsf{definite}$ matrix-valued function : $\forall n, \forall \textbf{s}_1, \ldots, \textbf{s}_n \in \mathbb{R}^d, \ \forall t_1, \ldots, t_n \in \mathbb{R}$ et $\forall \textbf{a}_1, \ldots, \textbf{a}_n \in \mathbb{R}^p$

$$
\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^p \sum_{l=1}^p a_{i,k} C_{kl} (\mathbf{s}_j - \mathbf{s}_i, t_j - t_i) a_{j,l} \geq 0
$$

 \blacktriangleright Use covariance functions from known classes, e.g. Matérn

Univariate modeling: Gneiting class

Definition (Gneiting, 2002)

$$
C(\mathbf{h},u)=\frac{1}{(1+\gamma(u))^{\tau}}C_{\infty}\left(\mathbf{h}/(1+\gamma(u))^{b/2}\right)
$$

- **▶** *b* is a separability parameter, with $0 < b < 1$
- $\blacktriangleright \ \gamma$ is an unbounded variogram, e.g.: $\gamma(u) = (u.r_T)^\alpha$, with $0 \leq \alpha \leq 2$
- ▶ *C*_∞ is a covariance function on \mathbb{R}^d , $\forall d \geq 1$, e.g. a Matérn covariance function

$$
\mathcal{M}(\boldsymbol{h};r_S,\nu)=\frac{\sigma^22^{1-\nu}}{\Gamma(\nu)}\left(\|\boldsymbol{h}\|.r_S\right)^{\nu}\mathcal{K}_{\nu}\left(\|\boldsymbol{h}\|.r_S\right),
$$

where $r_S > 0$ is a scale parameter and K_V is the modified second order Bessel function of order ν

Multivariate generalization

Theorem (Allard, D., Clarotto, L. and Emery, X., 2022)

$$
C_{ij}(\mathbf{h},u)=\frac{\tau_{ij}}{(\eta_{ij}(u)+b_{ij}^2)^{\tau}}\mathcal{M}\left(\mathbf{h};\frac{a_{ij}}{\left(\eta_{ij}(u)+b_{ij}^2\right)^{b/2}},\nu_{ij}\right),
$$

- \blacktriangleright $[C_{ij}(\mathbf{h}, u)]_{i,j=1}^p$ is a multivariate space-time covariance under some conditions on the $p \times p$ matrices \vec{b} , \vec{a} , ν et τ
- \blacktriangleright $\eta(u)$ is a $p \times p$ matrix-valued unbounded pseudo-variogram on R
- ▶ Each variable has its own set of parameters in space and in time
- ▶ Illustrated later

SWGs

Adapted from Yiou (2024)

SWG are tools that generate random series of meteorological variables such as precipitation, temperature, wind speed, etc., with statistics similar to those of recorded data:

- ▶ Mean, variance, quantiles, skewness, extremes
- ▶ Covariance (dependence) between variables
- \triangleright Temporal dependence / coherence (persistence)
- ▶ Spatial dependence / coherence
- ▶ Calibrated on recorded series
- ▶ Computational efficiency ⇒ long series and/or large number of realizations

For what purpose?

Used in impact studies

Outputs of SWGs are used as inputs in process-based models, e.g. energy demand models, crop models, hydrological models, insurance models, ...

- ▶ Assessing complex, non linear, responses to climate in agro-ecological systems
- \blacktriangleright Explore unmeasured climates
- \blacktriangleright Explore plant / ecosystem models as functions of climate variability
- \triangleright Optimal decision under uncertainty: simulate up to year $t + k$, optimize decision
- ▶ Disaggregating (downscaling) meteorological variables from GCM outputs

Some challenges that SWGs pose to spatial statistics

- ▶ Building models quantifying spatial, temporal and spatio-temporal variations
- \triangleright Doing stochastic simulations, both for the bulk and for the tail
- ▶ Building models and methods for multivariate, spatio-temporal extreme events
- ▶ Devising new approaches for assessing return levels of impactful compound events

Our context; the project BEYOND

- ▶ The **BEYOND** project: towards new tools for epidemiological surveillance (for plants)
- ▶ *Xylella Fastidiosa* (Xf) is a plant pathogen propagated by insects
- ▶ Major damages: 54,000 ha of dead or uprooted olive orchards in Italy
- ▶ Seen in Corsica, Baleares, Tuscany
- ▶ Propagation depends on the whole seasonal cycle: not just one "extreme" event
- ,→ Need for a **stochastic tool able to generate complete cycles over a region**

Our domain of interest

- ▶ Region of interest: PACA, highly non-stationary
- \triangleright 6 daily variables: precipitation, humidity, radiation, wind, min and max temperature
- ▶ SAFRAN reanalysis data from 2012 to 2021

General architecture

Two main assumptions

- \blacktriangleright Finite number of weather types over the region, $k = 1, \ldots, K$
- ▶ In each weather type *k*, the weather variables are modeled as transformed latent Gaussian random fields

- $▶$ Weather states are modeled as 1st order Markov chain with transition matrices $π(t)$
- \triangleright We use empirical transformation for $\psi_{k,i}$ with tail adjustments (Peterson and Cavanaugh, 2019)
- \blacktriangleright Multivariate spatio-temporal GPs for $\mathbf{Z} = (Z_i)_{i=1,p}$

Multivariate covariance

Simulation

Marginals

All seasons, all continuous variables

Correlations

Winter, 10 random locations

20 / 35

Wet and dry spells

Wet winter spells, Dry summer spells

Fire Weather Index

Summer

Fire Weather Index

Summer

23 / 35

Take home messages

- ▶ It is possible to design a spatial, multivariate SWG with quite good statistical performances
- ▶ One among many possible statistical model

MSTWeatherGen

▶ Obakrim S., Benoit L., Allard D., Rey J. (2024). MSTWeatherGen: Multivariate Space-Time Weather Generator. R package

<https://sobakrim.github.io/MSTWeatherGen/index.html>

▶ Obakrim, S., Benoit, L., & Allard, D. (2024). A multivariate and space-time stochastic weather generator using a latent Gaussian framework.

<https://hal.science/hal-04715860/>

- ▶ Future work: non-stationary covariance; increased persistence, **long period of droughts**
- ▶ PhD student (A. Doizé) with P. Naveau and O. Wintenberger

Typology of SWGs

Model based (parametric)

- $(+)$ identification through a set of parameters \Rightarrow sensitivity analysis
- $(+)$ can create non recorded situations and simulate more extreme conditions than those observed
- (−) temporal and spatial coherence sometimes difficult to reproduce

Resampling / analogs (non parametric)

- $(+)$ compatibility between climatic variables is quaranteed
- $(+)$ statistical features and spatial/temporal are reproduced by construction
- (−) cannot create unobserved meteorological situations
- $(-)$ Implicit assumption: the most extreme observation has been observed

Our approach

- \triangleright Spatial resampling (Direct Sampling) for the spatial patterns
- \blacktriangleright Extreme value theory for the extrapolation of very high values

Opitz, T., Allard, D., & Mariethoz, G. (2021). Semi-parametric resampling with extremes. *Spatial Statistics*, 42, 100445.

イロト イ押 トイヨ トイヨト

[Intro](#page-1-0) [S-T](#page-6-0) S-T [SWG](#page-10-0) SWG [Heat Waves](#page-24-0) [Conclusion](#page-34-0)

Spatial resampling

Direct Sampling (DS) (Mariethoz and Caers, 2014)

- Cannot generate values beyond those observed
- ▶ Tend to under-represent the extremal dependence

 \hookrightarrow Use extreme value theory as a complement to DS

Pareto processes

Generalized Pareto Distribution

If X (**s**) ∼ F **s**, **s** ∈ D , then

$$
X(\mathbf{s}) - u \mid X(\mathbf{s}) > u \sim \text{GPD}_{\sigma(\mathbf{s}), \xi(\mathbf{s})} \quad \text{as} \quad u \to \infty
$$

Pareto processes (Dombry et Ribatet, 2015)

 \blacktriangleright Suppose uniform margins for $X^U(\mathbf{s})$

 \blacktriangleright Consider a homogeneous risk functional $r(X^U)$

$$
(1-u)^{-1}X^U(\mathbf{s})\mid [\mathbf{r}(\mathbf{X}^U)>u]\rightarrow Y(\mathbf{s}), \quad \mathbf{s}\in\mathcal{D}, \quad \text{as } u\rightarrow 1
$$

where

$$
Y(\mathbf{s}) = \eta(\mathbf{s}).\mathbf{r}(\mathbf{Y})
$$

with

$$
\eta(\bm{s}) := \frac{Y(\bm{s})}{r(\bm{Y})} \perp r(\bm{Y})
$$

"Uplift" extremal fields

- \blacktriangleright We have *T* independent copies of $X_t(\mathbf{s}), t = 1, \ldots, T$
- \triangleright Consider only realizations such that

$$
\mathbf{r}\left(\mathbf{X}^{\mathbf{U}}\right) > u \qquad u \in (0,1)
$$

UpliftExtremeFields

- 1. Compute $\eta(s) = X^U(s)/r(X^U)$.
- 2. Draw *q* ∼ Unif(*u*, 1) or set *q* for a given return period
- 3. Generate the uplifted field

$$
\tilde{X}^U(\mathbf{s}) = q\eta(\mathbf{s}), \quad \mathbf{s} \in \mathcal{D}
$$

 \hookrightarrow will be used the enrich the dataset with synthetic events more extremes than those observed

Case study: heat waves in France

Motivation

- ▶ Absolute breaking temperature record in France, on 28th of June, 2019: 45.9[°]C at Gallargues, Gard (previous record was 44.1° C)
- \triangleright SAFRAN reanalysis data for T_{max} , from 2010 to 2016, June-September
- \blacktriangleright In each mesh, standardization to uniform

 \blacktriangleright $r = \text{med}(X_t^U)$

GPD parameters

Shape Scale Scale

INRAG

 290 30 / 35

Most extreme event

Generating new heatwaves

Resample first, back-transform second

- 1. Generate uplifted extreme episodes (on the uniform scale)
- 2. Perform DS on uniform scales to create new spatial patterns
- 3. Back-transform on Temp scale using F_s^{-1}
- ▶ Non stationarity is properly accounted for
- ▶ *q* is chosen according to a 10 year return period

New realizations

Can we validate?

- \blacktriangleright Functional risk is $r =$ median on *U*
- \blacktriangleright We selected the 30 most extreme events (2011-2016) wrt to *r*
- ▶ The 20 highest are kept aside for validation
- \blacktriangleright The 10 lowest are used for training
- \triangleright We use $u = 0.92$, which is the lower bound of the validation set; return period is 17 days during summer
- ▶ 250 simulations are generated using DS

Maximum

- ▶ Working on long period of rainfalls and droughts
- ▶ Simulation of precipitations using generative approaches
- ▶ Simulation of extreme flows on a river system
- \triangleright Coming up with an open library