Intro	S-T	SWG	Heat Waves	Conclusion
00000	0000	0000000000000	000000000	O

Building and simulating complex geostatistical models for climate and environmental sciences

Denis Allard, [with Lionel Benoit, Lucia Clarotto, Xavier Emery, Grégoire Mariethoz, Saïd Obakrim, Thomas Opitz]

> Biostatistique et processus Spatiaux (BioSP), INRAE Avignon, France

Math for Mathematics for planet Earth (M4E) Workshop 11-12 of November, 2024

Increasing frequency of "natural" disasters

Storm Boris 14th of Septembre 2024

Intro	S-T	SWG	Heat Waves	Conclusion
O●OOO	0000	0000000000000	000000000	O

Increasing frequency of "natural" disasters

Heat Waves June 2022 and August 2023

э

Non extreme climate events with huge impact

2016: Up to 30% yield loss on wheat in the "Breadbasket"

Compound events

Zscheischler et al., 2020

"A combination of multiple drivers and/or hazards that contributes to societal or environmental risk "

- Pre-conditionned
- Multivariate
- Temporal succession
- Spatially distributed

Stochastic simulation as a tool to address this complexity

Outline of the talk

- 1. Some reminders on spatial statistics
- 2. A multivariate, spatio-temporal Stochastic Weather Generator
- 3. A stochastic generator for heat waves

э

Statistical model

Often: trend + GP + noise

$$Z(\mathbf{s},t) = \mu(\mathbf{s},t) + Y(\mathbf{s},t) + \epsilon(\mathbf{s},t), \quad (\mathbf{s},t) \in D \times T \subset \mathbb{R}^d \times \mathbb{R}$$

► For example:

$$h[\mu(\mathbf{s},t)] = \sum_{k=1}^{p} \beta_k f_k(X_k(\mathbf{s})) + \sum_{l=1}^{q} \alpha_l g_l(X_l(t))$$

Y(s, t) is a centered, second order, stationary Gaussian Process

 $\mathbf{Cov}\{Y(\mathbf{s},t), Y(\mathbf{s}+\mathbf{h},t+u)\} = C(\mathbf{h},u)$

• $\epsilon(\mathbf{s}, t)$ random noise with mean 0

Need for valid and relevant covariance functions

Positive definiteness

Valid = positive definite

A function $C : \mathbb{R}^d \times \mathbb{R} \mapsto \mathbb{R}^p$ is a matrix-valued stationary covariance function iif C is a **positive** definite matrix-valued function : $\forall n, \forall \mathbf{s}_1, \dots, \mathbf{s}_n \in \mathbb{R}^d, \forall t_1, \dots, t_n \in \mathbb{R}$ et $\forall \mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^p$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{p} \sum_{l=1}^{p} a_{i,k} C_{kl}(\mathbf{s}_{j} - \mathbf{s}_{i}, t_{j} - t_{i}) a_{j,l} \geq 0$$

Use covariance functions from known classes, e.g. Matérn

э

Intro	S-T	SWG	Heat Waves	Conclusion
00000	00●0	0000000000000	000000000	O

Univariate modeling: Gneiting class

Definition (Gneiting, 2002)

$$\mathcal{C}(\mathbf{h}, u) = rac{1}{(1 + \gamma(u))^{ au}} \mathcal{C}_{\infty} \left(\mathbf{h}/(1 + \gamma(u))^{b/2}
ight)$$

- ▶ *b* is a separability parameter, with $0 \le b \le 1$
- ▶ γ is an unbounded variogram, e.g.: $\gamma(u) = (u.r_T)^{\alpha}$, with $0 \le \alpha \le 2$
- ▶ C_{∞} is a covariance function on \mathbb{R}^d , $\forall d \geq 1$, e.g. a Matérn covariance function

$$\mathcal{M}(\mathbf{h}; r_{\mathcal{S}}, \nu) = \frac{\sigma^2 2^{1-\nu}}{\Gamma(\nu)} \left(\|\mathbf{h}\| . r_{\mathcal{S}} \right)^{\nu} \mathcal{K}_{\nu} \left(\|\mathbf{h}\| . r_{\mathcal{S}} \right),$$

where $r_S>0$ is a scale parameter and \mathcal{K}_ν is the modified second order Bessel function of order ν

Multivariate generalization

Theorem (Allard, D., Clarotto, L. and Emery, X., 2022)

$$\mathcal{C}_{ij}(\mathbf{h},u) = rac{ au_{ij}}{(\eta_{ij}(u) + b_{ij}^2)^ au} \mathcal{M}\left(\mathbf{h}; rac{a_{ij}}{\left(\eta_{ij}(\mathbf{u}) + b_{ij}^2
ight)^{b/2}},
u_{ij}
ight)$$

- $[C_{ij}(\mathbf{h}, u)]_{i,j=1}^{p}$ is a multivariate space-time covariance under some conditions on the $p \times p$ matrices **b**, **a**, ν et τ
- $\eta(\mathbf{u})$ is a $p \times p$ matrix-valued unbounded pseudo-variogram on \mathbb{R}
- Each variable has its own set of parameters in space and in time
- Illustrated later

SWGs

Adapted from Yiou (2024)

SWG are tools that generate random series of meteorological variables such as precipitation, temperature, wind speed, etc., with statistics similar to those of recorded data:

- Mean, variance, quantiles, skewness, extremes
- Covariance (dependence) between variables
- Temporal dependence / coherence (persistence)
- Spatial dependence / coherence
- Calibrated on recorded series
- Computational efficiency ⇒ long series and/or large number of realizations

For what purpose?

Used in impact studies

Outputs of SWGs are used as inputs in process-based models, e.g. energy demand models, crop models, hydrological models, insurance models, ...

- Assessing complex, non linear, responses to climate in agro-ecological systems
- Explore unmeasured climates
- Explore plant / ecosystem models as functions of climate variability
- Optimal decision under uncertainty: simulate up to year t + k, optimize decision
- Disaggregating (downscaling) meteorological variables from GCM outputs

Some challenges that SWGs pose to spatial statistics

- Building models quantifying spatial, temporal and spatio-temporal variations
- Doing stochastic simulations, both for the bulk and for the tail
- Building models and methods for multivariate, spatio-temporal extreme events
- Devising new approaches for assessing return levels of impactful compound events

Our context; the project BEYOND

- The BEYOND project: towards new tools for epidemiological surveillance (for plants)
- > Xylella Fastidiosa (Xf) is a plant pathogen propagated by insects
- Major damages: 54,000 ha of dead or uprooted olive orchards in Italy
- Seen in Corsica, Baleares, Tuscany
- Propagation depends on the whole seasonal cycle: not just one "extreme" event
- \hookrightarrow Need for a stochastic tool able to generate complete cycles over a region

Our domain of interest

- Region of interest: PACA, highly non-stationary
- 6 daily variables: precipitation, humidity, radiation, wind, min and max temperature
- SAFRAN reanalysis data from 2012 to 2021

Intro	S-T	SWG	Heat Waves	Conclusion
00000	0000	00000●0000000		O

General architecture

Two main assumptions

- Finite number of weather types over the region, k = 1, ..., K
- In each weather type k, the weather variables are modeled as transformed latent Gaussian random fields

- Weather states are modeled as 1st order Markov chain with transition matrices $\pi(t)$
- We use empirical transformation for $\psi_{k,i}$ with tail adjustments (Peterson and Cavanaugh, 2019)
- Multivariate spatio-temporal GPs for $\mathbf{Z} = (Z_i)_{i=1,p}$

Multivariate covariance

Intro 00000	S-T 0000	SWG 0000000000000	Heat Waves 000000000	Conclusion O

Simulation

Intro	S-T	SWG	Heat Waves	Conclusion
00000	0000	0000000000000	000000000	O

Marginals

All seasons, all continuous variables

19/35

æ

Correlations

Winter, 10 random locations

Wet and dry spells

Wet winter spells, Dry summer spells

Fire Weather Index

Summer

Intro	S-T	SWG	Heat Waves	Conclusion
00000	0000	00000000000000	000000000	O

Fire Weather Index

Summer

Take home messages

- It is possible to design a spatial, multivariate SWG with quite good statistical performances
- One among many possible statistical model

MSTWeatherGen

 Obakrim S., Benoit L., Allard D., Rey J. (2024). MSTWeatherGen: Multivariate Space-Time Weather Generator. R package

https://sobakrim.github.io/MSTWeatherGen/index.html

Obakrim, S., Benoit, L., & Allard, D. (2024). A multivariate and space-time stochastic weather generator using a latent Gaussian framework.

https://hal.science/hal-04715860/

- Future work: non-stationary covariance; increased persistence, long period of droughts
- PhD student (A. Doizé) with P. Naveau and O. Wintenberger

Typology of SWGs

Model based (parametric)

- (+) identification through a set of parameters \Rightarrow sensitivity analysis
- $(+)\,$ can create non recorded situations and simulate more extreme conditions than those observed
- (-) temporal and spatial coherence sometimes difficult to reproduce

Resampling / analogs (non parametric)

- (+) compatibility between climatic variables is guaranteed
- (+) statistical features and spatial/temporal are reproduced by construction
- (-) cannot create unobserved meteorological situations
- (-) Implicit assumption: the most extreme observation has been observed

Our approach

- Spatial resampling (Direct Sampling) for the spatial patterns
- Extreme value theory for the extrapolation of very high values

Opitz, T., Allard, D., & Mariethoz, G. (2021). Semi-parametric resampling with extremes. *Spatial Statistics*, 42, 100445.

Spatial resampling

Direct Sampling (DS) (Mariethoz and Caers, 2014)

Bivariate Training Image

Bivariate Simulation

- Cannot generate values beyond those observed
- Tend to under-represent the extremal dependence

 \hookrightarrow Use extreme value theory as a complement to DS

Intro	S-T	SWG	Heat Waves	Conclusion
00000	0000	0000000000000	00●0000000	O

Pareto processes

Generalized Pareto Distribution

If $X(\mathbf{s}) \sim F_{\mathbf{s}}, \quad \mathbf{s} \in \mathcal{D}$, then

$$X(\mathbf{s}) - u \mid X(\mathbf{s}) > u \sim GPD_{\sigma(\mathbf{s}), \xi(\mathbf{s})}$$
 as $u \to \infty$

Pareto processes (Dombry et Ribatet, 2015)

Suppose uniform margins for X^U(s)

Consider a homogeneous risk functional $r(X^U)$

$$(1-u)^{-1}X^{U}(\mathbf{s}) \mid [\mathbf{r}(\mathbf{X}^{U}) > u] \rightarrow Y(\mathbf{s}), \quad \mathbf{s} \in \mathcal{D}, \quad \text{as } u \rightarrow 1$$

where

$$Y(\mathbf{s}) = \eta(\mathbf{s}).\mathbf{r}(\mathbf{Y})$$

with

$$\eta(\mathbf{s}) := rac{Y(\mathbf{s})}{\mathbf{r}(\mathbf{Y})} \perp \mathbf{r}(\mathbf{Y})$$

"Uplift" extremal fields

- We have T independent copies of $X_t(\mathbf{s}), t = 1, ..., T$
- Consider only realizations such that

$$\mathbf{r}\left(\mathbf{X}^{\mathsf{U}}\right) > u \qquad u \in (0,1)$$

UpliftExtremeFields

- 1. Compute $\eta(\mathbf{s}) = X^U(\mathbf{s})/\mathbf{r}(\mathbf{X}^U)$.
- 2. Draw $q \sim \text{Unif}(u, 1)$ or set q for a given return period
- 3. Generate the uplifted field

$$ilde{X}^{U}(\mathbf{s}) = \mathbf{q}\eta(\mathbf{s}), \quad \mathbf{s} \in \mathcal{D}$$

 \hookrightarrow will be used the enrich the dataset with synthetic events more extremes than those observed

Case study: heat waves in France

Motivation

- Absolute breaking temperature record in France, on 28th of June, 2019: 45.9°C at Gallargues, Gard (previous record was 44.1°C)
- SAFRAN reanalysis data for T_{max}, from 2010 to 2016, June-September
- In each mesh, standardization to uniform
- \blacktriangleright $r = med(X_t^U)$

GPD parameters

Shape

æ

Intro	S-T	SWG	Heat Waves	Conclusion
00000	0000	0000000000000	000000●000	O

Most extreme event

Generating new heatwaves

Resample first, back-transform second

- 1. Generate uplifted extreme episodes (on the uniform scale)
- 2. Perform DS on uniform scales to create new spatial patterns
- 3. Back-transform on Temp scale using F_s^{-1}
- Non stationarity is properly accounted for
- q is chosen according to a 10 year return period

Intro	S-T	SWG	Heat Waves	Conclusion
00000	0000	00000000000000	○○○○○○○●○	O

New realizations

Can we validate?

- Functional risk is r = median on U
- We selected the 30 most extreme events (2011-2016) wrt to r
- The 20 highest are kept aside for validation
- The 10 lowest are used for training
- We use u = 0.92, which is the lower bound of the validation set; return period is 17 days during summer
- 250 simulations are generated using DS

< 🗗 🕨

Intro 0000	S-T 0 0000	SWG 0000000000000	Heat Waves 000000000	Conclusion
Sor	ne final words			
	Heatwaves			
	One of the few approaches co	ombining non-parametric and para	ametric methods on extremes	\$
		E		
		GEOLEARNING CRUEE 10 End Efferte for De Constanted		
	Opeolo et programme	Fondsmeenent Erasgevenent Projes Fukkanovs Eusyn Parsonins E Nova rejunder Contast Enteren	Amuss .	
		INRAC STATES		
	(t			
	Current work on SWGs v	within the Chair Geolea	rning	
	Working on long period of rain	nfalls and droughts		

- Simulation of precipitations using generative approaches
- Simulation of extreme flows on a river system
- Coming up with an open library