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Abstract

Large or very large spatial (and spatio-temporal) datasets have become common place in many
environmental and climate studies. These data are often collected in non-Euclidean spaces (such
as the planet Earth) and they often present nonstationary anisotropies. This paper proposes a
generic approach to model Gaussian Random Fields (GRFs) on compact Riemannian manifolds
that bridges the gap between existing works on nonstationary GRFs and random fields on
manifolds. This approach can be applied to any smooth compact manifolds, and in particular
to any compact surface. By defining a Riemannian metric that accounts for the preferential
directions of correlation, our approach yields an interpretation of the nonstationary geometric
anisotropies as resulting from local deformations of the domain. We provide scalable algorithms
for the estimation of the parameters and for optimal prediction by kriging and simulation able
to tackle very large grids. Stationary and nonstationary illustrations are provided.

Keywords anisotropy; finite elements; Gaussian process; Laplace-Beltrami operator;
nonstationarity

1 Introduction
Large or very large spatial (and spatio-temporal) datasets have become common place in many
environmental and climate studies. Various approaches have been proposed by the statistical
community to tackle the “big N” challenge in ways that properly acknowledge the spatial and
spatio-temporal dependence structures usually observed in these datasets. Recently, several com-
petitions have been organized to compare methods and algorithms in this context (Heaton et al.,
2019, Huang et al., 2021) which provide an excellent overview of state-of-the-art methods for
analyzing large spatial datasets. Most algorithms rely on approximation methods of Gaussian
Processes, also known as Gaussian Random Fields (GRFs). In their conclusion, the organizers
of the first competition note that “spatial data may exhibit anisotropy, nonstationarity, large
and small range spatial dependence as well”. Despite its long history, modeling nonstationary
spatial datasets remains a challenge. Sampson and Guttorp (1992) proposed a space deforma-
tion approach further developed for instance in Perrin and Senoussi (2000) and Fouedjio et al.
(2015). The main difficulty with this approach is to estimate a valid, global, deformation of the
domain, which in practice is not guaranteed to exist. Paciorek and Schervish (2006) (see also
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Fouedjio et al. (2016)) introduced a class of nonstationary covariance functions based on the
kernel convolution approach of Higdon et al. (1999), later generalized in Porcu et al. (2009).
Our approach rather builds on the so-called “SPDE approach” introduced in the seminal work
of Lindgren et al. (2011), which relates GRFs characterized with Matérn covariance functions
to stationary solutions of a specific Stochastic Partial Differential Equation (SPDE), see also
Carrizo Vergara et al. (2022) for models beyond Whittle–Matérn GRFs. This approach can be
extended to the nonstationary case by allowing spatially varying coefficients of the SPDE, see
for instance Fuglstad et al. (2015a;b) among other possible references. Another challenge often
faced when analyzing environmental or climate data is to work on non-Euclidean domains. In
particular, methods for analyzing data on spheres have received a lot of attention, see Marinucci
and Peccati (2011), Jeong et al. (2017) and Porcu et al. (2021) for recent reviews and Rayner
et al. (2020) for a recent application using the SPDE approach dealing with extremely large
datasets. Methods developed for spheres depend usually on specific properties, such as expan-
sion into the spherical harmonics (Emery and Porcu, 2019, Lang and Schwab, 2015, Lantuéjoul
et al., 2019) or the use of arc distances to define valid covariance models (Gneiting, 2013, Huang
et al., 2011).

This paper aims at bridging the gap between existing works on nonstationary GRFs and
random fields on manifolds. Specifically, we propose a generic approach to model GRFs on
compact Riemannian manifolds and we provide scalable algorithms for their optimal prediction
by kriging and simulation. Our approach is based on two main ingredients. First, random fields
are defined through expansions in the eigenfunctions of the Laplace–Beltrami operator on the
Riemannian manifold which are, in some cases, solutions to some particular SPDEs. Then, we
build finite element approximations of these GRFs. This construction allows to perform optimal
prediction, simulation (including conditional) and estimation of the parameters using scalable
algorithms.

For this purpose, we define a Riemannian metric that accounts for the preferential directions
of correlation of the nonstationary GRF. This method yields an interpretation of the “local
anisotropies” as resulting from “local” deformations of the domain, in striking contrast to both
the space deformation and the kernel convolution approaches. The resulting fields can be seen as
a direct generalization of the construction for nonstationary random fields proposed in Fuglstad
et al. (2015a).

Our approach can be applied to any smooth compact manifold, and in particular to any
compact surface or hypersurface. It shares clear similarities with the work of Borovitskiy et al.
(2020), but in contrast, it is not restricted to Whittle–Matérn fields since in our approach the
GRF is characterized by its spectral density, whose inverse is restricted to belong to the family
of positive polynomials. Besides, our approach does not rely on the explicit computation of the
eigenfunctions and eigenvalues of the Laplace–Beltrami operator, and can be seen as providing a
theoretical motivation to the method developed in Borovitskiy et al. (2021) to deal with Gaussian
processes on graphs.

The flexibility of our approach does not result in increased computational costs. Indeed, we
show how prediction and conditional simulations can be performed through a so-called “matrix-
free” approach. This approach, unlike classical geostatistical algorithms, does not require to build
and store possibly large covariance matrices, but instead relies only on products between some
sparse matrices and vectors. This in turn ensures the scalability of this method, thus paving the
way to efficient nonstationary geostatistics for large datasets. We illustrate our approach with
2D and 3D synthetic examples and grids with more that 107 nodes for the 3D cases.

The organization of the paper is the following. The GRF model is presented in Section 2,
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along with its finite element approximation and covariance function. Kriging and simulation
algorithms are provided in Section 3. Section 4 shows how the parameters can be estimated using
maximum likelihood. All methods are summarized as Algorithms. Stationary and nonstationary
illustrations are then provided in Section 5. We conclude with some final words in Section 6.
Proofs and technical details are deferred to the Appendix. Throughout this paper, vectors and
matrices will be denoted in bold fonts. The superscript T denotes the transpose operation on
matrices or vectors. Diag is the operator that transforms a vector of length n into an n × n

matrix whose diagonal elements are those of the vector and whose off-diagonal elements are 0.
Ip is the p × p identity matrix. |A| is the determinant of the square matrix A and ‖ · ‖ denotes
the Euclidean norm.

2 Random Fields on Riemannian Manifolds
2.1 Definition and Finite Element Approximation
A generic approach to define and characterize GRFs on Riemannian manifolds has been proposed
in Borovitskiy et al. (2020) and in Lang and Pereira (2021) and is now briefly recalled. Let D
be a smooth compact manifold of dimension d equipped with a Riemannian metric g, and let
f : R+ → R+ be a function such that for some β > d/2, |λβf (λ)| is bounded as λ → +∞.
A centered GRF Z is constructed on the resulting Riemannian manifold (D, g) through the
expansion

Z =
∑
k∈N

f 1/2(λk)wkek, (1)

where f 1/2 : R+ → R is a function such that
(
f 1/2

)2 = f on R+, {wk}k∈N is a sequence of
independent standard Gaussian variables, {λk}k∈N denote the set of eigenvalues of the Laplace–
Beltrami operator −� on (D, g), and {ek}1�k�∞ denote the associated eigenfunctions. In order
to get a feeling of what Eq. (1) represents, one could recall that on R

d the eigenfunctions of the
Laplacian are all the members of the uncountable family of functions {e−i〈ω,x〉 : ω ∈ R

d}. In this
case, the Whittle–Matérn random fields are solution to the SPDE (κ2 −�)α/2Z = W where W is
the white noise process on R

d and the associated spectral density is f 1/2(‖w‖) = (κ2 +‖ω‖)−α/2.
Going back to our definition of GRFs on compact manifolds, the eigenvalues and eigenfunc-

tions of the Laplace–Beltrami operator are not known in general. A first approach, proposed by
Borovitskiy et al. (2020), consists of computing them numerically by solving (approximately) the
corresponding eigenvalue problems. Instead, we approximate Z using a finite element approach
as in Lindgren et al. (2011) and Lang and Pereira (2021), as this method will naturally yield
scalable algorithms for prediction and sampling tasks. First, the manifold D is triangulated using
n nodes s1, . . . , sn ∈ D and a family of compact support approximation functions {ψi}1�i�n is
defined over D, where each ψi is the piecewise linear function equal to 1 at the node si and 0 at
all the other nodes. Then, Z is approximated by a linear combination Z defined as

Z =
n∑

i=1

ziψi, (2)

where for any i ∈ {1, . . . , n}, zi = Z(si) is the weight associated with the basis function ψi .
The weights Z = (z1, . . . , zn)

T are chosen so that Z can also be written using the same
expansion as the one defining the original field Z in (1), but replacing now the eigenfunctions
{ek}k∈N and eigenvalues {λk}k∈N of −� by those of its Galerkin approximation (see Appendix D
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for more details). This particular choice yields an explicit formula to compute these weights,
see Proposition 2.1 below. We first introduce C and F , the mass and stiffness matrices respec-
tively defined by

[C]ij = (ψi, ψj ), [F ]ij = (∇ψi, ∇ψj), 1 � i, j � n, (3)

where (·, ·) denotes the L2 inner product on the Riemannian manifold (see Appendix C). Note
that since each basis function ψi (1 � i � n) is zero for every node of the triangulation except
one, the resulting matrices C and F are sparse. Let then

√
C ∈ R

n×n be a matrix such that√
C(

√
C)T = C, and let S be the matrix defined by

S = (
√

C)−1F (
√

C)−T . (4)

Note that since S is real, symmetric and positive semi-definite, it is diagonalizable with non-
negative eigenvalues. Therefore it can be written as

S = V Diag(λ1, . . . , λn)V
T ,

where λ1, . . . , λn denote the eigenvalues of S and V is an orthogonal matrix whose columns are
eigenvectors of S.

Proposition 2.1. Let Z be the vector of weights as in Eq. (2). Then, the vector Z is a centered
Gaussian vector with covariance matrix � given by

� = (
√

C)−T f (S)(
√

C)−1, (5)

where f (S) is a matrix function, defined from the eigendecomposition of S as

f (S) = V Diag
(
f (λ1), . . . , f (λn)

)
V T .

This result is shown in Pereira (2019) and Lang and Pereira (2021). In the latter reference, a
convergence result of the approximation of Z by Z as the mesh size of the triangulation decreases
is provided, thus further justifying this approach.

The matrix square-root
√

C can be computed using matrix functions or through a Cholesky
decomposition. In practice however,

√
C is replaced by the so-called mass lumping approximation

defined as the diagonal matrix with entries:

[√C]ii = √
(ψi, 1), 1 � i � n. (6)

To ease the notations, but at the cost of a slight abuse of notation, the mass lumping approxima-
tion will also be denoted

√
C in the remainder of this text. As shown in Lindgren et al. (2011),

this approximation comes with negligible effect on the covariance of the resulting random field.
It allows to readily have access to the inverse of the square-root matrix

√
C and yields

[S]ij = (∇ψi, ∇ψj)√
(ψi, 1)

√
(ψj , 1)

, 1 � i, j � n, (7)

which ensures that the matrix S is also sparse.
The expression of the covariance matrix � in Eq. (5) involves a matrix function defined from

the eigendecomposition of S, which is notoriously computationally expensive. To avoid this, two
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particular cases can be considered. If the function f is approximated by a polynomial, the re-
sulting matrix function becomes a matrix polynomial, which can be computed without requiring
eigendecompositions. This is the rationale behind the Galerkin–Chebyshev approach proposed
in Lang and Pereira (2021), where the function f is replaced by its Chebyshev polynomial
approximation over an interval containing the eigenvalues of S.

We propose here an alternative approach in the spirit of Lindgren et al. (2011) and Rue
and Held (2005). We assume that f is the inverse of a polynomial P taking positive values over
R+, i.e. f = 1/P . Then the resulting precision matrix Q of the weights can be expressed as

Q = �−1 = (
√

C)P (S)(
√

C)T , (8)

which again involves a matrix polynomial instead of a matrix function. Computing the matrix
Q can then be done by summing iterates of the matrix S, resulting in a matrix whose sparsity
depends on the degree of P : the higher the degree of P , the less sparse Q is. This approach,
which we refer to as a “matrix free” approach, will be adopted in the algorithms presented
in Section 3 for prediction and simulation.

2.2 Second-order Characterization

2.2.1 Stationary and Approximately Stationary Covariance Functions

Let us consider the GRF Z defined by Eq. (1) on some compact Riemannian manifold (D, g).
It is straightforward to show that its covariance function CZ can be written as:

CZ(x1, x2) =
∑
k∈N

f (λk)ek(x1)ek(x2), x1, x2 ∈ D. (9)

In the particular case where (D, g) is an Euclidean domain equipped with the usual metric,
Solin and Särkkä (2020) show that CZ approximates the covariance of a random field on D with
radial spectral density f 1/2 (defined in Eq. (1)). They also provide a uniform bound on the error
between the actual covariance function of Z and the covariance function associated with f 1/2

which shows that the approximation improves as we move further away from the boundary of
D. Hence, in this case, Z approximates an isotropic GRF with covariance C given by

CZ(x1, x2) ≈ C(‖x1 − x2‖), x1, x2 ∈ D, (10)

where C is the inverse Fourier transform of w �→ f 1/2(‖w‖).
More generally, expansions similar to (9) have been used to characterize the covariance

of random fields on (Riemannian) manifolds. For instance, Lang and Schwab (2015) use it to
describe covariance functions of random fields on the sphere (endowed with its usual metric), and
show an explicit link between the regularity of the resulting field and the decay of the sequence
{f 1/2(λk)}k∈N. On general compact Riemannian manifolds, Borovitskiy et al. (2020) characterize
their “Matérn Gaussian processes in the sense of Whittle” through covariance functions of the
form (9), by taking f 1/2 to be the spectral density of the usual Matérn covariance function (i.e.
as defined for isotropic random fields on R

d). Hence, the field Z defined by (1) with covariance
function given by (9) can be seen as the counterpart, on the Riemannian manifold (D, g), of
the random fields with radial spectral density f 1/2 on R

d and covariance function given by
the inverse Fourier transform of f 1/2. Examples of sampled GRFs with Matérn covariance on
different domains are presented in Figure 1.
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Figure 1: Example of GRFs with Matérn covariance function on the sphere and on surfaces
shaped like a cow, a paraboloid and a duck-shaped swim ring.

2.2.2 Nonstationary Covariances

The general construction of random fields on Riemannian manifold presented in the previous
section can be used to define nonstationary models of GRFs, and in particular fields that exhibit
local anisotropies. Such fields are defined on Euclidean domains of dimension d ∈ {2, 3} as follows:
around each point of the domain, there is a preferential direction along which the range of highly
correlated values is maximal, whereas it is minimal in the orthogonal direction(s). The angles
defining the preferential directions are called anisotropy angles and the size of the ranges are
called anisotropy ranges. These anisotropy parameters can be graphically represented by an
ellipse/ellipsoid whose axes length and direction are respectively given by the anisotropy ranges
and angles.

Following the approach described in Pereira (2019), a GRF with local anisotropies on some
bounded Euclidean domain D can be built by defining a GRF on a specific Riemannian manifold:
anisotropy angles and ranges can be used to define a metric tensor at each point of D. In other
words, at each p ∈ D, the metric is chosen so that it locally “deforms” D into a local domain
where the anisotropy reduces to isotropy thanks to the composition of a rotation and a scaling
that would turn an ellipse/ellipsoid into a circle/sphere (see Figure 2). This transformation
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Figure 2: Deformation turning an anisotropy ellipse (with range parameters (ρ1, ρ2) and angle
θ) into a circle.

Figure 3: Example of anisotropy parameters (left) and corresponding random field simulation
obtained using our method (right), on the unit square.

results in a metric defined as

gp(u, v) = (
D(p)−1R(p)−1u

)T (
D(p)−1R(p)−1v

)
, u, v ∈ R

d, (11)

where D(p) is the diagonal matrix whose entries are the anisotropy ranges at p ∈ D and R(p)

is the rotation matrix defined from the anisotropy angles at p.
To get the covariance properties of the field in the original domain D equipped with the

metric (11), we can first apply the deformation and then use (10), to obtain

CZ(p, p + h) ≈ C(gp(p, p + h)) = C(‖D(p)−1R(p)−1h‖), (12)

where h ∈ R
d is some infinitesimal displacement vector around p. It is then straightforward to

check that such a covariance locally reproduces the desired anisotropy properties around p (see
Chilès and Delfiner (2012) for details). An example of the type of nonstationary fields that can
be sampled using this method is presented in Figure 3.
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In conclusion, given a compact Euclidean domain D and a field of anisotropy parameters
on D, defining nonstationary random fields with the corresponding anisotropy properties can
be done by applying the approach described in Section 2.1 to a tailored Riemannian manifold
(namely D equipped with the metric (11)). Note that similar ideas could be applied to define
random fields with varying covariance structure on more general surfaces if one can define
coherent fields of anisotropy parameters on such surfaces.

3 Prediction on Riemannian Manifolds
We now show how the construction presented in Section 2 provides efficient prediction algorithms
in a quite general setting, which includes nonstationary covariances, non-Euclidean support and
non-Matérn covariance functions. Given some spatial domain D, we assume that we observe
some real-valued variable Y at p � 1 locations x1, . . . , xp ∈ D. These observations are modeled
as

Y (xi) = Z(xi ) + τεi, 1 � i � p,

where ε1, . . . , εp are independent standard Gaussian variables, τ > 0, and Z denotes some GRF
on D acting as a latent variable. Hence, they can be seen as observations of the latent field Z
affected by some independent centered Gaussian noise with variance τ 2.

We aim at making the Best Linear Unbiased Prediction (BLUP) of the variable Z at q lo-
cations xp+1, . . . , xp+q ∈ D. Under a Gaussian assumption, the BLUP is equal to the conditional
expectation (Tong, 2012), i.e. the optimal prediction in a L2-sense. In the geostatistical litera-
ture, this prediction is referred to as kriging (Chilès and Delfiner, 2012). In most geostatistical
approaches, the GRF is either characterized by a covariance function or by a precision matrix.
Here, in contrast, the GRF is defined on a triangulation of D and it is characterized by a positive
polynomial P as per Eq. (8). In this section, to derive the kriging algorithm, we first suppose
that this polynomial is known. We will show in the next section how τ 2 and the coefficients of P

can be estimated from a single realization of the vector of observations Y = (Y (x1), . . . , Y (xp))T .
Note that the approach we present here readily generalizes to the case where covariates

are added to the model. In that case, the vector of observations Y should contain the residuals
obtained after removing from the data points the trend defined by the covariates.

3.1 A “Matrix-Free” Kriging Algorithm
We start with some triangulation of D with n nodes s1, . . . , sn ∈ D, and Z is approximated
by its finite element approximation Z associated to this triangulation as shown in Section 2.
Following Eq. (2), the values of the field Z at the observed locations x1, . . . , xp can be expressed
as a linear combination of the values taken at the triangulation nodes s1, . . . , sn. The vector of
observations Y can thus be written as

Y = MDZ + τε, (13)

where Z = (Z(s1), . . . , Z(sn))
T , ε = (ε1, . . . , εp)T and MD ∈ R

p×n is the so-called design matrix
containing the weights defined by

[MD]ij = ψj(xi), 1 � i � p, 1 � j � n. (14)

The next proposition provides an analytic expression for the kriging predictors Z∗(xp+1) at some
given target location xp+i ∈ D (1 � i � q). It is proven in Appendix A.1.
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Proposition 3.1. The conditional distribution of Z given Y is that of a Gaussian vector with
mean E[Z|Y ] and covariance matrix Cov[Z|Y ] given by

E[Z|Y ] = �MT
D(MD�MT

D + τ 2Ip)−1Y = (τ 2Q + MT
DMD)−1MT

DY , (15)
and

Cov[Z|Y ] = � − �MT
D(MD�MT

D + τ 2Ip)−1MD� = τ 2(τ 2Q + MT
DMD)−1, (16)

where � is the covariance matrix of Z, Q = �−1 is its precision matrix, and τ 2 and MD are
defined in Eq. (13). Then, the vector of kriging predictors Z∗ = (Z∗(xp+1), . . . , Z

∗(xp+q))
T can

be written as
Z∗ = MTE[Z|Y ], (17)

where MT is the target design matrix defined by
[MT]ij = ψj(xp+i ), 1 � i � q, 1 � j � n. (18)

We have assumed that the function f characterizing the field Z is the inverse of P , a
positive polynomial on R+. This implies in particular that the precision matrix Q in (15) can be
expressed as in Eq. (8). Assuming that P is known, the kriging predictors Z∗ in (17) can thus
be computed using Algorithm 1.

Algorithm 1: Kriging prediction.
Require: Matrices

√
C, S, MD and MT, as defined in Eqs. (6), (7), (14) and (18).

Require: Polynomial P .
Require: Parameter τ > 0.
Require: Vector of observations Y .
1: Solve for X the linear system

AX = MT
DY (19)

where
A = τ 2Q + MT

DMD = τ 2(
√

C)P (S)(
√

C)T + MT
DMD (20)

2: Return Z∗ := MTX.

Note that all the matrices
√

C, S, MD and MT are sparse, and that the matrix Q is also
sparse when P has a low degree. A classical approach for solving the linear system in Algo-
rithm 1 consists in first building and storing the matrix A = τ 2Q + MT

DMD, and then using
a method for solving sparse linear systems. For instance, one could use so-called sparse direct
solvers. Such solvers start by factorizing A into sparse triangular factors (using LU or Cholesky
decompositions) and then solving the resulting triangular systems. The Cholesky decomposition
for large A can be done exactly or with very accurate decomposition using Tile Low Rank ap-
proximations with the ExaGeoStat software (Abdulah et al., 2018). Note however, that in this
case the matrix A needs to be built and stored.

When these direct approaches are not possible due to size of the problem, an alternative
approach using iterative solvers must be used (Saad, 2003). Such solvers only rely on products
between the matrix A and vectors, and therefore can be used to approximately solve the lin-
ear system in Algorithm 1 without effectively requiring to build and store A: only a routine
performing the product between A and vectors is needed. Note that such products would only
require products between the sparse matrices

√
C, S and MD and vectors (see Algorithm 2).

This approach yields a “matrix-free” approach to kriging in the sense that it does not require
to explicitly build and store the precision matrix Q of the field.
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Algorithm 2: Product between a matrix (αDP(B)DT + MT M) and a vector.
Require: Matrices B, D ∈ R

n×n and M ∈ R
p×n

Require: Polynomial P(X) =
K∑

k=0

ckX
k for some integer K � 0, c0, . . . , cK ∈ R

Require: Parameter α ∈ R

Require: Vector v ∈ R
n

1: Compute x := MT Mv = (
(Mv)T M

)T

2: Compute w := DT v = (vT D)T

3: Compute y := cKw

4: for k = K − 1, . . . , 0 do
5: Compute y ← ckw + Sy

6: end for
7: Return αDy + x

3.2 Conditional Simulations

Generating samples from the conditional distribution of Z (or rather of its approximation Z)
given Y is a straightforward task. Since the distribution of Z is entirely specified through the
distributions of its weights Z, this amounts to sample from the conditional distribution of Z

given Y , which will be denoted πZ|Y . Recall from Proposition 3.1 that πZ|Y is a multivariate
Gaussian distribution with mean E[Z|Y ] and covariance matrix Cov[Z|Y ] given by Eqs. (15)
and (16). Hence, sampling from the conditional distribution πZ|Y is straightforward, as shown
in Algorithm 3.

Algorithm 3: Conditional simulation of the vector Z given the observations Y .
Require: Covariance matrix Cov[Z|Y ] defined in Eq. (16).
Require: Conditional mean E[Z|Y ] defined in Eq. (15).
1: Sample a centered Gaussian vector X with covariance matrix Cov[Z|Y ].
2: X ← X + E[Z|Y ].
3: Return X.

The conditional mean E[Z|Y ] required for Algorithm 3 is computed using the same methods
as those described in Section 3 to compute the kriging predictors. Since an explicit formula is
available for Cov[Z|Y ] in Eq. (16), sampling the Gaussian vector of the first step in Algorithm 3
could be directly done by finding a factor L such that Cov[Z|Y ] = LLT and then returning
the product LW where W is a vector of independent standard Gaussian variables. Possibles
candidates for L include the Cholesky decomposition of Cov[Z|Y ], but also the matrix function
h(Cov[Z|Y ]) where h is the square-root function, and the matrix function h̃(τ 2Q + MT

DMD)

where h̃ is the inverse square-root function. In practice, and as before, both matrix functions
could be approximated by matrix polynomials and the “matrix-free” algorithms presented above
could be used.

Another method to sample the Gaussian vector of the first step in Algorithm 3 stems from
the fact that the vector Z − E[Z|Y ] is such a vector, and that the expression of Cov[Z|Y ] does
not explicitly depend on the vectors Z and Y . Hence, by sampling new vectors Z′ and Y ′ with the
same distribution as Z and Y , and by computing Z′ − E[Z′|Y ′] we retrieve a centered Gaussian
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vector with covariance matrix Cov[Z′|Y ′] = Cov[Z|Y ]. This method is presented in Algorithm 4.
It relies on being able to sample the vector Z′ described above, which can be done by either:
• Computing the product BW where B is a square-root of � (e.g. the Cholesky factor of � or

the matrix (
√

C)−T (1/
√

P)(S)).
• Solving for X the linear system B̃X = W , where B̃ is a square-root of Q (e.g. the Cholesky

factor of Q or the matrix (
√

C)
√

P(S)).
In practice, the matrix functions appearing above are once again polynomially approximated.
More details on the step 1 of Algorithm 4 can be found in Pereira and Desassis (2019).

Algorithm 4: Sampling a centered Gaussian vectors with covariance matrix
Cov[Z|Y ].

Require: Covariance matrix � in Eq. (5) or precision matrix in Eq. (8).
Require: Matrix MD and parameter τ defining the observations Y in Eq. (13).
1: Sample a centered Gaussian vector Z′ with covariance matrix � or precision matrix Q.
2: Sample a vector ε′ with independent standard Gaussian entries.
3: Compute Y ′ := MDZ′ + τε′.
4: Compute E[Z′|Y ′] by replacing Y by Y ′ in Eq. (15).
5: Return Z′ − E[Z′|Y ′].

4 Estimation of the Parameters
In order to apply the kriging and simulation procedures presented above, one needs to know
the polynomial P characterizing the field Z, as well as the parameter τ 2 defining the variance
of the Gaussian noise. Usually, these parameters are not known, and they must be estimated
from the observations Y . We now show how a maximum likelihood approach can be efficiently
implemented. Let us denote by θ the vector of parameters containing the coefficients of P and
the variance τ 2. Note then that, following Eq. (13), the vector Y is a centered Gaussian vector
with covariance matrix

�Y (θ) = MDQ(θ)−1MT
D + τ 2Ip, (21)

where Q(θ) = (
√

C)P (S)(
√

C)T . The log-likelihood of Y is thus

L(θ) = −1

2

(
p log 2π − log |QY (θ)| + Y T QY (θ)Y

)
,

where QY (θ) = �Y (θ)−1. Considering the matrix A = A(θ) defined in (20), we can write

Y T QY (θ)Y = τ−2
(
Y T Y − Y T MDA(θ)−1MT

DY
)
, (22)

and
log |QY (θ)| = log |Q(θ)| + (n − p) log τ 2 − log |A(θ)|

= log |P(S)| + 2 log |√C| + (n − p) log τ 2 − log |A(θ)|. (23)

The precise computation of the log-likelihood deserves some comments. The quadratic form (22)
is computed using the methods introduced to solve the linear system, as shown in Algorithm 1
and in Eq. (19). Evaluating the log-determinants in Eq. (23) could be done using a Cholesky
(or LU) factorization of the matrices Q(θ) and A(θ) and then summing the log of the diagonal
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elements of the resulting triangular factors. However, one can also use a “matrix-free” approach
to compute an approximation of these log-determinants. This approach, detailed in the rest of
this section, is a generalization to matrix functions of the results in Han et al. (2015) and can
be seen as a particular instance of Hutchinson estimator (Hutchinson, 1989). It is based on the
following result (proven in Appendix A.2).

Proposition 4.1. Let B be a diagonalizable matrix and h : R → (0, ∞). The log-determinant
of the matrix function h(B) satisfies the relation

log |h(B)| = Trace(log h(B)) = E[W T log h(B)W ],
where W is a vector whose entries are independent zero-mean unit-variance random variables,
and log h(B) is the matrix function defined from the function log h.

The matrix function log h(B) can in practice be approximated by a matrix polynomial
Plog h(B) where Plog h denotes a polynomial approximation of log h over an interval containing
the eigenvalues of B (and defined using for instance Chebyshev polynomial approximation).
Then, we can approximate log |h(B)| as

log |h(B)| ≈ 1

M

M∑
m=1

W T
mPlog h(B)Wm, (24)

where W1, . . . , WM denote M independent samples of W (defined for instance from a Gaussian or
Rademacher distribution). Similarly to Algorithm 2, each quadratic form in Eq. (24) is computed
in an iterative way while only requiring products between the matrix B and vectors. This
approach can be used to compute the log-determinant (23) by noting that both log |P(S)| and
log |A(θ)| can be written in the form log h(B) with B = S and h = P for the former, and B =
A(θ) and h to be the identity map for the latter. The whole procedure to compute log |QY (θ)| is
summarized in Algorithm 5. Note in particular that this algorithm requires to know the intervals
containing the eigenvalues of S and those of A(θ). Details on the computation of these intervals
can be found in Appendix B. A discussion about the “matrix-free” approach to the computation
of log |h(B)| is deferred to Section 6.

Since we can now evaluate the log-likelihood for any vector of parameters, we can plug Al-
gorithm 5 into any optimization algorithm that only requires evaluations of an objective func-
tion to maximize it. Examples of such algorithms include the Nelder-Mead algorithm, and any
gradient-descent algorithm for which the gradients would be numerically approximated by finite
differences (Nocedal and Wright, 2006).

Finally, note that the procedure presented in this section naturally extends to the case where
covariates are added to the model. Indeed, assuming now that the observations are modeled as
Ỹ = Xβ + Y where Y is defined as before, X is a matrix of covariates and β a vector containing
the associated regression coefficients. Then, the maximum likelihood estimate of β is given by
β̂(θ) = (XT QY (θ)X)−1XQY (θ)Ỹ , and the estimation of the parameter can be carried out by
maximizing the likelihood L, where Y is now replaced by Ỹ − Xβ̂(θ).

5 Illustration
The proposed algorithms are illustrated on synthetic very large data sets. Our aim is to show
that our approach compares very well with the GMRF approximation in Lindgren et al. (2011)
on very large grids, even in cases that are favorable to the GMRF approximation.
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Algorithm 5: Computation of log |QY (θ)| defined in Eq. (23).
Require: Matrices

√
C, S ∈ R

n×n and MD ∈ R
p×n as defined in Eqs. (6), (7) and (14)

Require: Vector θ containing the coefficients of P and the variance parameter τ 2

Require: Number of samples M

1: Compute the coefficients of a polynomial approximation Plog P of the function
λ �→ log P(λ) over an interval containing the eigenvalues of S

2: Compute the coefficients of a polynomial approximation Plog of the function
λ �→ log λ over an interval containing the eigenvalues of the matrix A(θ) defined in
Eq. (20)

3: Set Q1 = Q2 := 0
4: for m = 1, . . . , M do
5: Sample a vector W with independent identically distributed entries with mean 0 and

variance 1
6: Compute u := Plog P (S)W using Algorithm 2
7: Set Q1 ← Q1 + W T u

8: Compute v := Plog(A(θ))W using Algorithm 2
9: Set Q2 ← Q2 + W T v

10: end for
11: Compute L = (Q1 − Q2)/M + (n − p) log τ 2 + 2

∑n
i=1 log[√C]ii

12: return L

5.1 Simulation and Kriging

We first consider the case of 3D standardized GRF with varying anisotropies in the horizontal
plane and an exponential covariance, which corresponds in 3D to the choice P(λ) = (κ2 + λ)2.
Following the remarks of Section 3.2, it is sampled by using a Chebyshev polynomial approx-
imation of λ �→ 1/

√
P(λ) = (κ2 + λ)−1 of degree 268 (see e.g. Pereira and Desassis, 2019, for

details). We chose a mesh built from 6 tetrahedrons in each cell of a regular grid with lags
suitably chosen to fit with the ranges of the GRF. The resulting size of the discretized vector
Z is about 1.5 × 107. On this extremely large grid, the simulation takes only 30 seconds on a
laptop running at 1.9 Ghz on 8 cores. Most of the time is spent for the matrix-vector products
implied by the polynomial approximation as shown in Algorithm 2.

A sub-sampling of this simulation is done to obtain 105 randomly located observations
which are used to perform kriging. Since interpolation by kriging is smoother than a simulation,
a coarser mesh can be used. The size of the resulting kriging system is about 7 × 106. A mea-
surement error with a variance τ 2 = 0.01 is added to the model. Conjugate gradient without
preconditioning is used to solve the system of Eq. (19) in Algorithm 1. The algorithm converges
in 1098 iterations for a computing time around 400 seconds. Results are displayed in Figure 4.
Note that in most applications, the variance τ 2 is greater than 1% of the variance. In these
cases, the system of Eq. (19) is better conditioned, leading to a faster convergence of the conju-
gate gradient. Kriging is done here in a nonstationary context, with a stationary mesh which is
thus far from optimality in most locations. If the simulation were stationary, the mesh could be
tailored to the specific model at hand. The grid could be oriented according to the anisotropy
tensor and the lag in each direction could be chosen according to the associated directional
range of the model. As a result, a given accuracy would be obtained with a lower degree of the
Chebyshev polynomial and system Eq. (19) would be better conditioned, thus leading to faster
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Figure 4: Left: 3D simulation of a GRF with varying anisotropies. Right: Kriging estimate using
105 randomly located samples from the simulation on the left.

Table 1: Coefficients of the polynomials (true, estimated, and initial).

Degree 0 1 2 3

True 1 −0.75 −0.75 1
Estimated 0.55 2.42 −5.17 2.60
Initial 0.001 0 0 0

Figure 5: Left: Realization of the GMRF on the square. Right: Sampling of 1.5 × 104 noisy
observations from the simulation on the left.

computations. In our experience, stationary simulations and kriging are usually 10 times faster
than nonstationary ones, all other settings being equal.

5.2 Estimation of the Parameters of a GMRF

In this example, the coefficients of a polynomial P characterizing an isotropic GMRF and the
measurement error τ 2 are estimated by the approach described in Section 4. The coefficients of
the true P are given in Table 1. It does not correspond to a Matérn type. 1.5 × 104 synthetic
observations are sampled from the model at random locations of a square of size 40 and a
Gaussian noise with variance τ 2 = 0.01 is added (see Figure 5).

To ensure that P takes strictly positive values over R+ during the estimation, the problem
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Figure 6: Covariances obtained from P by FFT (true model and estimated).

is re-parameterized by using two arbitrary polynomials P1 and P2 as follows:

P(x) = P 2
1 (x) + xP 2

2 (x). (25)

Indeed, all the positive polynomials over R+ can be written according to Eq. (25). A fixed
positive value ε is added to the right-hand side of Eq. (25) to ensure strict positivity of P . In
this study, ε is set to 10−3. The components of θ are the coefficients of P1 and P2. The likelihood
is maximized with the COBYLA algorithm (Powell, 1994), using several initial guesses and
selecting the best output. To compute the log-determinant through Hutchinson estimators, the
same Gaussian vectors are used for all the iterations. First only one vector is used in order to
find an acceptable solution. Then the algorithm is relaunched and 10 random vectors are used
until convergence.

The true coefficients of P (resulting from those of P1 and P2) are given in Table 1 along
with the estimated coefficients. We also give in this table the initial guess that yielded the
estimated coefficients. The initial value for τ 2 was set to 1 and its estimation is 0.00944. At first
glance, the estimation results does not seem very accurate. However, the associated covariance
functions, computed by Fast-Fourier-Transform (FFT) and displayed on Figure 6 lead to a more
positive conclusion. Indeed, the estimated covariance is close to the true one, especially near
the origin. Nevertheless, the likelihood seems to have several modes and the results are sensitive
to the choice of the initial values. τ 2 is generally well estimated but the estimated covariance
of the underlying GMRF is not always so close to the true one. Despite this optimization
problem, further discussed in the next section, the matrix-free approach allows to approximate
the likelihood in order to estimate the shape of the covariance, even with a moderate number of
random vectors for the Hutchinson estimator.

6 Discussion and Conclusion
We have proposed a generic approach for defining GRFs on compact Riemannian manifolds.
It combines two ingredients of modern geostatistics, as pioneered in Lindgren et al. (2011):
the definition of GRFs through the expansions in the eigenfunctions of the Laplace–Beltrami
operator on the Riemannian manifold and the finite element approximation of these GRFs. This
approach is quite general. Not limited to spheres, it can be applied to construct valid GRFs on
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any smooth compact manifold – and in particular to any compact surface. Moreover, since the
GRF is characterized by its spectral density, it is not limited to Whittle–Matérn random fields.
The proposed Riemannian metric offers a straightforward interpretation of local anisotropies.
Our approach is thus also perfectly suited to the analysis of data in Euclidean domains with
nonstationary correlation ranges and nonstationary anisotropies.

For this quite general class of GRFs, we have provided efficient algorithms that do not
require to build and store possibly very large matrices. Instead, our “matrix-free” approach is
grounded on algorithms only requiring efficient routines for computing the product between
very sparse matrices and vectors, as shown in Algorithm 2. This ensures the scalability of this
method, thus paving the way to efficient nonstationary geostatistics for large datasets. We have
shown on synthetic examples that our approach is able to handle grids with millions of nodes
(up to 107) in only few minutes.

The main bottleneck is the computation of the log-determinant of the matrix function h(B)

in Proposition 4.1. When possible, the Cholesky decomposition of B is best. This is the case for
matrices whose size is in the range of 104 or smaller. The “matrix-free” approach described above
scales very well with the size of B. It has been successfully applied in the context of seismic
filtering (Pereira, 2019, Pereira et al., 2020) and it is now part of industrial codes able to filter
very large noisy seismic datasets (in the range 106 to 107 in few minutes). Even though being
scalable, our algorithms could be accelerated in some situations. Algorithm 5 requires a Monte-
Carlo loop relating to the Hutchinson estimator Eq. (24) and iterated products as described
in Algorithm 2 which can be long if the degree of the polynomial is high. Further research is
needed in order to better assess the precision of the approximation (24) in view of optimizing
the computation of the log-determinant.

Besides, the inference of parameters through likelihood maximization poses some challenges
due to the existence in general of local maxima (Williams and Rasmussen, 2006). In our case,
we performed the minimization with several initial guesses and chose the one yielding the best
result. In order to robustify the estimation, one could move to algorithms better equipped to
handle local maxima, e.g. particle swarm optimizers and other evolutionary optimizers. Inspired
by the recent advances in Machine Learning and Deep Learning, another line of research is how
to maximize the log-likelihood using (stochastic) gradient algorithms (Simon, 2013).

We believe that the “matrix-free” approach is thus a very promising tool for the analysis of
environmental dataset that will be tested in future work, including in a spatio-temporal setting.
Other directions for future research include 3D extensions and the modeling of nonstationary
anisotropies on spheres and on manifolds in general.

Supplementary Material
The code used to perform the maximum likelihood estimation in Section 5.2 is available at
https://github.com/mike-pereira/matrix-free-mle.

A Proofs
A.1 Proof of Proposition 3.1
Consider the vector X given by

X =
(

Z

Y

)
=

(
In 0np

MD τIp

)(
Z

ε

)
.

https://github.com/mike-pereira/matrix-free-mle


528 Pereira, M. et al.

Note that X is a centered Gaussian vector with covariance matrix

Cov[X] =
(

In 0np

MD τIp

)(
� 0nn

0pp Ip

)(
In 0np

MD τIp

)T

=
(

� �MT
D

MD� MD�MT
D + τ 2Ip

)
. (26)

Since X is multivariate Gaussian it follows that the conditional distribution of Z given Y is
a Gaussian vector with mean E[Z|Y ] and covariance matrix Cov[Z|Y ] (Tong, 2012, Theorem
3.3.4) given by

E[Z|Y ] = �MT
D(MD�MT

D + τ 2Ip)−1Y ,

Cov[Z|Y ] = � − �MT
D(MD�MT

D + τ 2Ip)−1MD�.

Then, Eqs. (15) and (16) follow from computing Cov[X]−1 from Eq. (26).
Finally, recall that since we are dealing with Gaussian vectors, the vector of kriging predic-

tors Z∗ coincides with the conditional expectation of the vector ZT = (Z(xp+1), . . . , Z(xp+q))
T ,

given the observations Y . Hence, by linearity of the expectation and definition of MT, we have

Z∗ = E[ZT|Y ] = E[MTZ|Y ] = MTE[Z|Y ].

A.2 Proof of Proposition 4.1

By definition of matrix functions, and denoting by λ1, . . . , λn the eigenvalues of B, we have

Trace(log h(B)) =
n∑

i=1

log h(λi) = log
n∏

i=1

h(λi) = log |h(B)|.

The second equality is then a direct consequence of the well-known Hutchinson trace estimator
(Hutchinson, 1989).

B Intervals of Eigenvalues
We here show how intervals containing all eigenvalues of the matrices S and A respectively
defined in Eq. (4) and Eq. (20) can be computed. Since the matrix S is positive definite, an
interval containing its eigenvalues is obtained by considering [0, λmax(S)], where λmax(S) is an
upper-bound of the eigenvalues of S. This upper-bound can be obtained by taking λmax(S) =√

Trace(ST S) or by relying on Gershgorin circle theorem (Gershgorin, 1931), which we now
recall.

Proposition B.1. The eigenvalues of a symmetric matrix B ∈ R
n×n with entries Bij are con-

tained in the interval
[ min
1�i�n

(Bii − Ri), max
1�i�n

(Bii + Ri)],

where Ri = ∑
j �=i |Bij |, 1 � i � n.

Regarding the matrix A = τ 2Q + MT
DMD, lower and upper bounds of its eigenvalues are

given in the next proposition.
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Proposition B.2. Let λmin(A) (resp. λmax(A)) denote some lower (resp. upper) bound of the
eigenvalues of the matrix A. Then,

λmin(A) = τ 2

(
min

1�i�n
[√C]2

ii

)(
inf

λ∈[0,λmax(S)]
P(λ)

)
,

λmax(A) = τ 2

(
max

1�i�n
[√C]2

ii

)(
sup

λ∈[0,λmax(S)]
P(λ)

)
+

(
max

1�i�n

p∑
k=1

[MD]ki

)
.

Proof. To ease the notation, let B = MT
DMD. Note that we can take

λmin(A) = τ 2λmin(Q) + λmin(B), λmax(A) = τ 2λmax(Q) + λmax(B),

where λmin(·) (resp. λmax(·)) denotes some lower (resp. upper) bound of the eigenvalues of a
matrix. On the one hand, since the matrix

√
C is diagonal, we can take λmin(Q) = min1�i�n

[√C]2
iiλmin(P (S)) and λmax(Q) = max1�i�n[

√
C]2

iiλmax(P (S)). Recalling then the definition of
matrix functions, it is clear that the eigenvalues of P(S) are lower (resp. upper) bounded by the
infimum (resp. supremum) of P over an interval containing the eigenvalues of S, e.g. [0, λmax(S)].

Finally, noting that B is positive semi-definite, we can take λmin(B) = 0. Then, Proposi-
tion B.1 and the non-negativity of the entries of B allow us to get λmax(B) = max1�i�n(Bii +Ri)

where

Bii + Ri = Bii +
∑
j �=i

Bij =
n∑

j=1

Bij =
n∑

j=1

p∑
k=1

[MD]ki[MD]kj =
p∑

k=1

[MD]ki

n∑
j=1

[MD]kj .

Noting then that the rows of MD sum to 1 (since they correspond to linear interpolation weights),
we have Bii + Ri = ∑p

k=1[MD]ki , which ends the proof.

C Integration on Riemannian Manifolds
We recall usual formulas related to the computation of integrals defined over Riemannian mani-
folds. We refer the reader to Jost (2008), Lee (2013) for further details. Let (D, g) be a compact
Riemannian manifold of dimension d. Let (U, φ) denote a coordinate chart of D, i.e. U is an
open subset of D and φ is a homeomorphism mapping U to an open subset of Rd . Recall that
the integral of a function f : D → R over U is defined as the quantity∫

U

f dVg =
∫

φ(U)

f ◦ φ−1(x)
√

|g|(φ−1(x))dx,

where |g|(φ−1(x)) is the determinant of the metric tensor of g at φ−1(x) ∈ U , expressed in the
coordinate chart (U, φ). The integral of f over D is then obtained by gluing together (using a
partition of unity) local integrals over a collection of coordinate charts that cover D.

In particular, assuming now that we have a triangulation of D, the integral of f over D can
be obtained by summing local integrals over each triangle T of the triangulation. In this case,
the diffeomorphism φ associated to T is the map that sends T to the standard simplex of Rd .

Let L2(D) denote the set of square-integrable functions of (D, g). L2(D) is a Hilbert space
when equipped with the inner product (·, ·) defined by (f1, f2) = ∫

D f1f2dVg. Note that for any
differentiable functions f1 and f2 we denote by (∇f1, ∇f2) the integral over D of the function
h : p �→ gp(∇f1(p), ∇f2(p)).
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And in turn, given a coordinate chart (U, φ) of D, the integral of h over U reduces to∫
U

hdVg =
∫

φ(U)

∇Rd (f1 ◦ φ−1)(x)T G(φ−1(x))−1∇Rd (f2 ◦ φ−1)(x)
√

|g|(φ−1(x))dx,

where G(·) denotes the metric tensor at given point of D and expressed in the coordinate chart
(U, φ), and ∇Rd denotes the usual gradient of functions of Rd .

D Galerkin Approximation
Let ψ1, . . . , ψn denote n linearly independent functions from D to R and let Vn denote their
linear span. The Galerkin approximation −�n of the Laplace–Beltrami operator −� is the
endomorphism mapping any f ∈ Vn to the element −�nf ∈ Vn satisfying for any u ∈ Vn,
(−�nf, u) = (−�f, u). This endomorphism is diagonalizable, and shares the same eigenvalues
as the scaled stiffness matrix S defined in Eq. (4) (Lang and Pereira, 2021).
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